A non-convex economic load dispatch problem with valve loading effect using a hybrid grey wolf optimizer

被引:0
作者
Mohammed Azmi Al-Betar
Mohammed A. Awadallah
Monzer M. Krishan
机构
[1] Al-Balqa Applied University,Department of Information Technology, Al
[2] Al-Aqsa University,Huson University College
[3] Al-Balqa Applied University,Department of Computer Science
来源
Neural Computing and Applications | 2020年 / 32卷
关键词
Economic load dispatch; Grey wolf optimizer; -Hill climbing optimizer; Power system; Optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Economic load dispatch (ELD) is a crucial problem in the power system which is tackled by distributing the required generation power through a set of units to minimize the fuel cost required. This distribution is subject to two main constraints: (1) equality and inequality related to power balance and power output, respectively. In the optimization context, ELD is formulated as a non-convex, nonlinear, constrained optimization problem which cannot be easily solved using calculus-based techniques. Several optimization algorithms have been adapted. Due to the complexity nature of ELD search space, the theoretical concepts of these optimization algorithms have been modified or hybridized. In this paper, the grey wolf optimizer (GWO) which is a swarm intelligence is hybridized with β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}-hill climbing optimizer (β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}HC) which is a local search algorithm, to improve convergence properties. GWO is very powerful in a wide search, while β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}HC is very powerful in deep search. By combining the wide and deep search ability in a single optimization framework, the balance between the exploration and exploitation is correctly managed. The proposed hybrid algorithm is named β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}-GWO which is evaluated using five different test cases of ELD problems: 3 generating units with 850 MW; 13 generating units with 1800 MW; 13 generating units with 2520 MW; 40 generating units with 10,500 MW; and 80 generating units with 21,000 MW. β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}-GWO is comparatively measured using 49 comparative methods. The results obtained by β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}-GWO outperform others in most test cases. In conclusion, the proposed β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}-GWO is proved to be a powerful method for ELD problem or for any other similar problems in the power system domain.
引用
收藏
页码:12127 / 12154
页数:27
相关论文
共 391 条
[1]  
Chatterjee A(2012)Solution of combined economic and emission dispatch problems of power systems by an opposition-based harmony search algorithm Int J Electr Power Energy Syst 39 9-20
[2]  
Ghoshal SP(2012)Economic load dispatch using population-variance harmony search algorithm Trans Inst Meas Control 34 746-754
[3]  
Mukherjee V(2018)A non-convex economic dispatch problem with valve loading effect using a new modified Arab J Sci Eng 9 1723-1729
[4]  
Panigrahi BK(1994)-hill climbing local search algorithm IEEE Trans Power Syst 42 276-288
[5]  
Pandi VR(2015)Environmentally constrained economic dispatch using the lagrangian relaxation method Appl Intell 69 46-61
[6]  
Das S(2014)Optimal economic dispatch with valve loading effect using self-adaptive firefly algorithm Adv Eng Softw 113 481-498
[7]  
Cui Z(2018)Grey wolf optimizer Expert Syst Appl 75 147-157
[8]  
Sharma R(2015)Natural selection methods for grey wolf optimizer Soil Dyn Earthq Eng 43 1548-1559
[9]  
Al-Betar MA(2015)Grey wolf optimizer for parameter estimation in surface waves Electr Power Compon Syst 38 251-266
[10]  
Awadallah MA(2019)Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms Int J Mach Learn Cybern 70 243-260