Sensitivity Analysis in an Immuno-Epidemiological Vector-Host Model

被引:0
|
作者
Hayriye Gulbudak
Zhuolin Qu
Fabio Milner
Necibe Tuncer
机构
[1] University of Louisiana at Lafayette,Department of Mathematics
[2] University of Texas at San Antonio,Department of Mathematics
[3] Arizona State University,School of Mathematical and Statistical Sciences
[4] Florida Atlantic University,Department of Mathematical Sciences
来源
Bulletin of Mathematical Biology | 2022年 / 84卷
关键词
Immuno-epidemiological model; Sensitivity analysis; Rift valley fever; Basic reproduction number; Multi-scale model; 92D30; 92D40;
D O I
暂无
中图分类号
学科分类号
摘要
Sensitivity Analysis (SA) is a useful tool to measure the impact of changes in model parameters on the infection dynamics, particularly to quantify the expected efficacy of disease control strategies. SA has only been applied to epidemic models at the population level, ignoring the effect of within-host virus-with-immune-system interactions on the disease spread. Connecting the scales from individual to population can help inform drug and vaccine development. Thus the value of understanding the impact of immunological parameters on epidemiological quantities. Here we consider an age-since-infection structured vector-host model, in which epidemiological parameters are formulated as functions of within-host virus and antibody densities, governed by an ODE system. We then use SA for these immuno-epidemiological models to investigate the impact of immunological parameters on population-level disease dynamics such as basic reproduction number, final size of the epidemic or the infectiousness at different phases of an outbreak. As a case study, we consider Rift Valley Fever Disease utilizing parameter estimations from prior studies. SA indicates that 1%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\%$$\end{document} increase in within-host pathogen growth rate can lead up to 8%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8\%$$\end{document} increase in R0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal R_0,$$\end{document} up to 1%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \%$$\end{document} increase in steady-state infected host abundance, and up to 4%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\%$$\end{document} increase in infectiousness of hosts when the reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal R_0$$\end{document} is larger than one. These significant increases in population-scale disease quantities suggest that control strategies that reduce the within-host pathogen growth can be important in reducing disease prevalence.
引用
收藏
相关论文
共 50 条
  • [1] Sensitivity Analysis in an Immuno-Epidemiological Vector-Host Model
    Gulbudak, Hayriye
    Qu, Zhuolin
    Milner, Fabio
    Tuncer, Necibe
    BULLETIN OF MATHEMATICAL BIOLOGY, 2022, 84 (02)
  • [2] Structural and Practical Identifiability Issues of Immuno-Epidemiological Vector-Host Models with Application to Rift Valley Fever
    Tuncer, Necibe
    Gulbudak, Hayriye
    Cannataro, Vincent L.
    Martcheva, Maia
    BULLETIN OF MATHEMATICAL BIOLOGY, 2016, 78 (09) : 1796 - 1827
  • [3] Vector-Borne Pathogen and Host Evolution in a Structured Immuno-Epidemiological System
    Gulbudak, Hayriye
    Cannataro, Vincent L.
    Tuncer, Necibe
    Martcheva, Maia
    BULLETIN OF MATHEMATICAL BIOLOGY, 2017, 79 (02) : 325 - 355
  • [4] A Network Immuno-Epidemiological HIV Model
    Gupta, Churni
    Tuncer, Necibe
    Martcheva, Maia
    BULLETIN OF MATHEMATICAL BIOLOGY, 2021, 83 (03)
  • [5] Vector-Borne Pathogen and Host Evolution in a Structured Immuno-Epidemiological System
    Hayriye Gulbudak
    Vincent L. Cannataro
    Necibe Tuncer
    Maia Martcheva
    Bulletin of Mathematical Biology, 2017, 79 : 325 - 355
  • [6] Sensitivity Analysis of Vector-host Dynamic Dengue Epidemic Model
    Hasan, Md. Rifat
    Hobiny, Aatef
    Alshehri, Ahmed
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2023, 14 (02): : 1001 - 1017
  • [7] A Network Immuno-Epidemiological HIV Model
    Churni Gupta
    Necibe Tuncer
    Maia Martcheva
    Bulletin of Mathematical Biology, 2021, 83
  • [8] Structural and Practical Identifiability Issues of Immuno-Epidemiological Vector–Host Models with Application to Rift Valley Fever
    Necibe Tuncer
    Hayriye Gulbudak
    Vincent L. Cannataro
    Maia Martcheva
    Bulletin of Mathematical Biology, 2016, 78 : 1796 - 1827
  • [9] A network immuno-epidemiological model of HIV and opioid epidemics
    Gupta, Churni
    Tuncer, Necibe
    Martcheva, Maia
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (02) : 4040 - 4068
  • [10] Dynamics and optimal control of an SIVR immuno-epidemiological model with standard incidence
    Duan, Xi-Chao
    Zhu, Chenyu
    Li, Xue-Zhi
    Numfor, Eric
    Martcheva, Maia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 549 (01)