Quantum superiority for verifying NP-complete problems with linear optics

被引:0
作者
Juan Miguel Arrazola
Eleni Diamanti
Iordanis Kerenidis
机构
[1] National University of Singapore,Centre for Quantum Technologies
[2] Sorbonne Université,LIP6, CNRS
[3] Université Paris Diderot,IRIF, CNRS
来源
npj Quantum Information | / 4卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Demonstrating quantum superiority for some computational task will be a milestone for quantum technologies and would show that computational advantages are possible not only with a universal quantum computer but with simpler physical devices. Linear optics is such a simpler but powerful platform where classically-hard information processing tasks, such as Boson Sampling, can be in principle implemented. In this work, we study a fundamentally different type of computational task to achieve quantum superiority using linear optics, namely the task of verifying NP-complete problems. We focus on a protocol by Aaronson et al. (2008) that uses quantum proofs for verification. We show that the proof states can be implemented in terms of a single photon in an equal superposition over many optical modes. Similarly, the tests can be performed using linear-optical transformations consisting of a few operations: a global permutation of all modes, simple interferometers acting on at most four modes, and measurement using single-photon detectors. We also show that the protocol can tolerate experimental imperfections.
引用
收藏
相关论文
共 89 条
[1]  
Knill E(2001)undefined Nature 409 46-undefined
[2]  
Laflamme R(2007)undefined Rev. Mod. Phys. 79 135-undefined
[3]  
Milburn G(2007)undefined Science 318 1567-undefined
[4]  
Kok P(2006)undefined Phys. Rev. Lett. 96 010401-undefined
[5]  
Munro WJ(2011)undefined Nat. Photonics 5 222-undefined
[6]  
Nemoto K(2014)undefined J. Phys. A Math. Theor. 47 424006-undefined
[7]  
Ralph TC(2014)undefined Phys. Rev. A 89 062305-undefined
[8]  
Dowling JP(2014)undefined Phys. Rev. A 90 042335-undefined
[9]  
Milburn GJ(2015)undefined Nat. Commun. 6 240502-undefined
[10]  
O’Brien JL(2016)undefined Phys. Rev. Lett. 116 032337-undefined