Classification of Solutions to Several Semi-linear Polyharmonic Equations and Fractional Equations

被引:0
作者
Zhuoran Du
Zhenping Feng
Yuan Li
机构
[1] Hunan University,School of Mathematics
[2] Henan Normal University,College of Mathematics and Information Science
[3] East China Normal University,School of Mathematical Sciences, Key Laboratory of MEA (Ministry of Education), Shanghai Key Laboratory of PMMP
来源
The Journal of Geometric Analysis | 2024年 / 34卷
关键词
Classification; Polyharmonic equation; Fractional equation; Method of moving planes; Integral constraint; 35B06; 35B08; 35J91;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the following semi-linear equations (-Δ)pu=u+γinRn,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (-\Delta )^pu=u^\gamma _+ ~~ \text{ in } {{\mathbb {R}}^n}, \end{aligned}$$\end{document}where γ∈(1,n+2pn-2p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \in (1,\frac{n+2p}{n-2p})$$\end{document}, n>2p>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>2p>0$$\end{document}, u+=max{u,0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_+=\max \{u,0\}$$\end{document}, and 2≤p∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le p\in {\mathbb {N}}$$\end{document} or p∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (0,1)$$\end{document}. Subject to the integral constraint u+γ∈L1(Rn),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_+^\gamma \in L^1({\mathbb {R}}^n), \end{aligned}$$\end{document}we obtain the classification of solutions to the above polyharmonic equation for any γ<n+2pn-2p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma <\frac{n+2p}{n-2p}$$\end{document} and γ≤nn-2p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \le \frac{n}{n-2p}$$\end{document}, according to the two different assumptions: Δu(x)→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta u(x)\rightarrow 0$$\end{document} and u(x)=o(|x|2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u(x)=\text{ o }(|x|^2)$$\end{document} at infinity, respectively. Under the other integral constraint u+q∈L1(Rn),q=n(γ-1)2p,γ<n+2pn-2p,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_+^q\in L^1({\mathbb {R}}^n), \quad q=\frac{n(\gamma -1)}{2p},\quad \gamma <\frac{n+2p}{n-2p}, \end{aligned}$$\end{document}which is scaling invariant, the classification of solutions with the decay assumption Δu(x)→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta u(x)\rightarrow 0$$\end{document} at infinity is established for any integer p≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 2$$\end{document}, and the classification of solutions with the growth assumption u(x)=o(|x|2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u(x)=\text{ o }(|x|^2)$$\end{document} at infinity is proved for integers p=2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2, 3$$\end{document} as well. In the fractional equation case, namely p∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (0,1)$$\end{document}, under either of the above two integral constraints, we also complete the classification of solutions with certain growth assumption at infinity.
引用
收藏
相关论文
共 63 条
[1]  
Caffarelli L(1989)Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth Commun. Pure Appl. Math. 42 271-297
[2]  
Gidas B(2021)Super poly-harmonic properties, Liouville theorems and classification of nonnegative solutions to equations involving higher-order fractional Laplacians Trans. Am. Math. Soc. 37 4781-4813
[3]  
Spruck J(2017)A classification of solutions of a fourth order semi-linear elliptic equation in Differ. Integr. Equ. 30 569-586
[4]  
Cao D(1997)On the uniqueness of an Math. Res. Lett. 4 1-12
[5]  
Dai W(1991)-th order differential equation in conformal geometry Duke Math. J. 63 615-622
[6]  
Qin G(1997)Classification of solutions of some nonlinear elliptic equations Ann. Math. 145 547-564
[7]  
Chammakhi R(2013)A priori estimates for prescribing scalar curvature equations Commun. Pure Appl. Anal. 12 2497-2514
[8]  
Harrabi A(2006)Super polyharmonic property of solutions for PDE systems and its applications Commun. Pure Appl. Math. 59 330-343
[9]  
Selmi A(2017)Classification of solutions for an integral equation Adv. Math. 308 404-437
[10]  
Chang S (2017)A direct method of moving planes for the fractional Laplacian J. Funct. Anal. 272 4131-4157