Extending Colorings of Planar Graphs

被引:0
作者
Weihua Lu
Han Ren
机构
[1] Shanghai Maritime University,College of Arts and Sciences
[2] East China Normal University,Department of Mathematics
来源
Graphs and Combinatorics | 2019年 / 35卷
关键词
Planar graph; Distance constraint; Coloring extensions; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a planar graph and W be a subgraph whose each component is a K2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{2}$$\end{document} of G. Let d be the minimum distance between any two distinct components of W. It is known that, if d≥8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 8$$\end{document}, then any 5-coloring of W can be extended to a 5-coloring of G. Up to now, it is the best possible with respect to the distance constraint. In this paper, we obtain sufficient conditions for such coloring extension when d≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 4$$\end{document}, d≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 6$$\end{document} and d≥7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 7$$\end{document}. It partially answers Albertson’s question in Albertson (1998). Then we extend a certain 3-coloring of some disjoint cycles that are face boundaries to a 5-coloring of the entire graph.
引用
收藏
页码:1161 / 1167
页数:6
相关论文
共 8 条
[1]  
Albertson MO(1998)You can’t paint yourself into a corner J. Combin. Theory Ser. B 73 189-194
[2]  
Albertson MO(1999)Extending graph colorings J. Combin. Theory Ser. B 77 83-95
[3]  
Moore EH(2012)Extending precolorings of circular cliques Discrete Math. 312 35-41
[4]  
Brewster RC(1993)Five-coloring maps on surfaces J. Combin. Theory Ser. B 59 89-105
[5]  
Noel JA(1997)Color-critical graphs on a fixed surface J. Combin. Theory Ser. B 70 67-100
[6]  
Thomassen C(1997)Graph colorings with local constraints-a survey Discuss. Math. Graph Theory 17 161-228
[7]  
Thomassen C(undefined)undefined undefined undefined undefined-undefined
[8]  
Tuza Z(undefined)undefined undefined undefined undefined-undefined