Molecular modeling of electrolyte and polysulfide ions for lithium-sulfur batteries

被引:0
|
作者
Shumaila Babar
Constantina Lekakou
机构
[1] University of Surrey,Materials Center
来源
Ionics | 2021年 / 27卷
关键词
Molecular simulations; Solvated ions; Desolvated ions; LiTFSI in DOL/DME; LiPF; in EC/DMC; Polysulfides;
D O I
暂无
中图分类号
学科分类号
摘要
The operation of a lithium-sulfur (Li-S) battery involves the transport of Li+ ions and soluble sulfides mostly in the form of solvated ions. Key challenges in the development of Li-S battery technology are the diffusion of Li+ in micropores filled with sulfur and eliminating the “shuttling” of polysulfides. Ion dimensions in solvated and desolvated forms are key parameters determining the diffusion coefficient and the rate of transport of such ions, while constrictivity effects due to the effect of pore size compared to ion size control both transport and filling of the pores. We present molecular simulations to determine the solvation parameters of electrolyte ions and sulfides S22−, S42−, S62−, and S82− in two different electrolyte systems: LiTFSI in DOL/DME and LiPF6 in EC/DMC. The calculated parameters include the coordination number and the geometrically optimized model and dimensions, using the van der Waals surface approach, of the solvated and desolvated ions. The desolvation energy of the electrolyte ions is also calculated. Such data is useful for the modeling and design of the pore sizes of cathode host materials to be able to accommodate the different sulfides while minimizing their “shuttling” between cathode and anode.
引用
收藏
页码:635 / 642
页数:7
相关论文
共 50 条
  • [1] Molecular modeling of electrolyte and polysulfide ions for lithium-sulfur batteries
    Babar, Shumaila
    Lekakou, Constantina
    IONICS, 2021, 27 (02) : 635 - 642
  • [2] An encapsulating lithium-polysulfide electrolyte for lithium-sulfur batteries
    Hou, Li-Peng
    Zhang, Xue-Qiang
    Yao, Nan
    Chen, Xiang
    Li, Bo-Quan
    Shi, Peng
    Jin, Cheng-Bin
    Huang, Jia-Qi
    Zhang, Qiang
    CHEM, 2022, 8 (04): : 1083 - 1098
  • [3] Electrolyte Measures to Prevent Polysulfide Shuttle in Lithium-Sulfur Batteries
    Di Donato, Graziano
    Ates, Tugce
    Adenusi, Henry
    Varzi, Alberto
    Navarra, Maria Assunta
    Passerini, Stefano
    BATTERIES & SUPERCAPS, 2022, 5 (07)
  • [4] Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte
    Yu, Xingwen
    Bi, Zhonghe
    Zhao, Feng
    Manthiram, Arumugam
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (30) : 16625 - 16631
  • [5] Magnetic Control of Electrolyte Trapping Polysulfide for Enhanced Lithium-Sulfur Batteries
    Cao, Yongan
    Wu, Qiao
    Chen, Yuchao
    Chen, Dong
    Liu, Chenlong
    Hao, Xiaoqian
    Zhu, Tianjiao
    Zhang, Bo
    Zou, Jiaxuan
    Wang, Wenju
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (07)
  • [6] Encapsulating-polysulfide electrolyte: An answer to practical lithium-sulfur batteries
    Long, Hong-Li
    Peng, Hong-Jie
    CHINESE CHEMICAL LETTERS, 2023, 34 (03)
  • [7] An Organodiselenide Comediator to Facilitate Sulfur Redox Kinetics in Lithium-Sulfur Batteries with Encapsulating Lithium Polysulfide Electrolyte
    Liu, Yiran
    Zhao, Meng
    Hou, Li-Peng
    Li, Zheng
    Bi, Chen-Xi
    Chen, Zi-Xian
    Cheng, Qian
    Zhang, Xue-Qiang
    Li, Bo-Quan
    Kaskel, Stefan
    Huang, Jia-Qi
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (30)
  • [8] Premature deposition of lithium polysulfide in lithium-sulfur batteries
    Chen, Zi-Xian
    Zhang, Yu-Tong
    Bi, Chen-Xi
    Zhao, Meng
    Zhang, Rui
    Li, Bo-Quan
    Huang, Jia-Qi
    JOURNAL OF ENERGY CHEMISTRY, 2023, 82 : 507 - 512
  • [9] Premature deposition of lithium polysulfide in lithium-sulfur batteries
    Zi-Xian Chen
    Yu-Tong Zhang
    Chen-Xi Bi
    Meng Zhao
    Rui Zhang
    Bo-Quan Li
    Jia-Qi Huang
    Journal of Energy Chemistry , 2023, (07) : 507 - 512
  • [10] On the cationic nature of lithium polysulfide in lithium-sulfur batteries
    Yan, Yu
    Liu, Xinyan
    CHINESE CHEMICAL LETTERS, 2023, 34 (03)