Separately continuous mappings with values in nonlocally convex spaces

被引:0
作者
Karlova O.O. [1 ]
Maslyuchenko V.K. [1 ]
机构
[1] Chernivtsi National University, Chernivtsi
关键词
Topological Space; Normal Space; Topological Vector Space; Metrizable Space; Baire Classification;
D O I
10.1007/s11253-008-0029-4
中图分类号
学科分类号
摘要
We prove that a collection (X, Y, Z) is a Lebesgue triple if X is a metrizable space, Y is a perfectly normal space, and Z is a strongly σ-metrizable topological vector space with stratification (Z m)m = 1∞, where, for every m ∈ ℕ, Zm is a closed, metrizable, separable subspace of Z that is arcwise connected and locally arcwise connected. © 2007 Springer Science+Business Media, Inc.
引用
收藏
页码:1840 / 1849
页数:9
相关论文
共 16 条
[1]  
Lebesgue H., Sur l'approximation des fonctions, Bull. Sci. Math., 22, pp. 278-287, (1898)
[2]  
Rudin W., Lebesgue first theorem, Mathematical Analysis and Applications, pp. 741-747, (1981)
[3]  
Maslyuchenko V.K., Mykhailyuk O.V., Sobchuk O.V., Investigation of separately continuous mappings, Proceedings of the International Mathematical Conference Dedicated to the Memory of Hans Hahn, pp. 192-246, (1995)
[4]  
Kalancha A.K., Maslyuchenko V.K., Baire classification of vector-valued separately continuous functions on products with finite-dimensional multiplier, Zb. Nauk. Pr. kam'Yanets'-podil'S'k. Ped. Univ., Ser. Fiz.-Mat. (Mat.), 4, pp. 43-46, (1998)
[5]  
Kalancha A.K., Maslyuchenko V.K., Lebesgue-Čech dimension and Baire classification of vector-valued separately continuous mappings, Ukr. Mat. Zh., 55, pp. 1596-1599, (2003)
[6]  
Banakh T.O., (Metrically) quarter-stratifiable spaces and their applications, Mat. Stud., 18, pp. 10-28, (2002)
[7]  
Karlova O.O., First functional Lebesgue class and Baire classification of separately continuous mappings, Nauk. Visn. Cherniv. Univ., Ser. Mat., 191-192, pp. 52-60, (2004)
[8]  
Maslyuchenko V.K., Plichko A.M., On one family of topologies on the space ℓ<sub>p</sub>, Mat. Met. Fiz.-Mekh. Polya, 35, pp. 194-198, (1992)
[9]  
Fosgerau M., When are Borel functions Baire functions?, Fund. Math., 143, pp. 137-152, (1993)
[10]  
Karlova O.O., Mykhailyuk V.V., Uniform limit of mappings of the first Baire class and Baire classification of mappings of the first Lebesgue class, Abstracts of Pidstryhach Conference of Young Scientists on Contemporary Problems in Mechanics and Mathematics [in Ukrainian], pp. 202-203, (2005)