Blow-up estimates for a higher-order reaction–diffusion equation with a special diffusion process

被引:0
作者
Bui Le Trong Thanh
Nguyen Ngoc Trong
Tan Duc Do
机构
[1] University of Science,Division of Applied Mathematics
[2] Ho Chi Minh City University of Education,undefined
[3] Thu Dau Mot University,undefined
来源
Journal of Elliptic and Parabolic Equations | 2021年 / 7卷
关键词
Blow up; Fourth-order; Higher-order; Special diffusion process; 35B44; 35K25; 35K30;
D O I
暂无
中图分类号
学科分类号
摘要
Let d∈{1,2,3,…}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \in \{1,2,3,\ldots \}$$\end{document} and Ω⊂Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^d$$\end{document} be open bounded with Lipschitz boundary. Consider the reaction–diffusion parabolic problem (P)ut|x|4+Δ2u=k(t)|u|p-1uinΩ×(0,T),u(x,t)=∂u∂ν(x,t)=0if(x,t)∈∂Ω×(0,T),u(x,0)=u0(x)ifx∈Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (P) \quad \left\{ \begin{array}{ll} \displaystyle \frac{u_t}{|x|^4} + \Delta ^2 u = k(t) \, |u|^{p-1}u &{} \text{ in } \Omega \times (0,T), \\ u(x,t) = \displaystyle \frac{\partial u}{\partial \nu }(x,t) = 0 &{} \text{ if } (x,t) \in \partial \Omega \times (0,T), \\ u(x,0) = u_0(x) &{} \text{ if } x \in \Omega , \end{array}\right. \end{aligned}$$\end{document}where T>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T > 0$$\end{document}, p∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in (1,\infty )$$\end{document} and 0≠u0∈H02(Ω)∩Lp+1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \ne u_0 \in H^2_0(\Omega ) \cap L^{p+1}(\Omega)$$\end{document}. We investigate the upper and lower bounds on the blow-up time of a weak solution to (P).
引用
收藏
页码:891 / 904
页数:13
相关论文
共 19 条
  • [1] Friedman A(1988)The blow-up time for higher order semilinear parabolic equations with small leading coefficients J. Differ. Equ. 75 239-263
  • [2] Oswald L(2006)On interfaces and oscillatory solutions of higher-order semilinear parabolic equations with non-Lipschitz nonlinearitiess Stud. Appl. Math. 117 353-389
  • [3] Galaktionov VA(2005)Non-uniqueness and global similarity solutions for a higher-order semilinear parabolic equation Nonlinearity 18 717-746
  • [4] Galaktionov VA(2002)Existence and blow-up for higher-order semilinear parabolic equations: majorizing order-preserving operators Indiana Univ. Math. J. 117 1321-13389
  • [5] Harwin PJ(2002)The problem of blow up in nonlinear parabolic equations Discrete Contin. Dyn. Syst. 8 399-433
  • [6] Galaktionov VA(2020)Blow-up phenomena for a reaction diffusion equation with special diffusion process Appl. Anal. 27 261-270
  • [7] Pohozaev SI(2021)Blow-up phenomena for a fourth-order parabolic equation with a general nonlinearity J. Dyn. Control Syst. 286 459-490
  • [8] Galaktonov VA(2003)A fourth-order parabolic equation modeling epitaxial thin film growth J. Math. Anal. Appl. 51 371-386
  • [9] Vazquez JL(1973)Some nonexistence and instability theorems for solutions of formally parabolic equation of the form Arch. Ration. Mech. Anal. 143 2507-2513
  • [10] Han Y(2015)Blow-up phenomena for a class of fourth-order parabolic problems Proc. Am. Math. Soc. 24B 118-128