Central limit theorems for random multiplicative functions

被引:0
作者
Kannan Soundararajan
Max Wenqiang Xu
机构
[1] Stanford University,Department of Mathematics
来源
Journal d'Analyse Mathématique | 2023年 / 151卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A Steinhaus random multiplicative function f is a completely multiplicative function obtained by setting its values on primes f(p) to be independent random variables distributed uniformly on the unit circle. Recent work of Harper shows that ∑n≤Nf(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\nolimits_{n \le N} {f(n)} $$\end{document} exhibits “more than square-root cancellation,” and in particular 1N∑n≤Nf(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1 \over {\sqrt N }}\sum\nolimits_{n \le N} {f(n)} $$\end{document} does not have a (complex) Gaussian distribution. This paper studies ∑n∈Af(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\nolimits_{n \in {\cal A}} {f(n)} $$\end{document}, where A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal A}$$\end{document} is a subset of the integers in [1, N], and produces several new examples of sets A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal A}$$\end{document} where a central limit theorem can be established. We also consider more general sums such as ∑n≤Nf(n)e2πinθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\nolimits_{n \le N} {f(n){e^{2\pi in\theta }}} $$\end{document}, where we show that a central limit theorem holds for any irrational θ that does not have extremely good Diophantine approximations.
引用
收藏
页码:343 / 374
页数:31
相关论文
共 25 条
[1]  
Benatar J(2022)Moments of polynomials with random multiplicative coefficients Mathematika 68 191-216
[2]  
Nishry A(2004)Rademacher chaos: tail estimates versus limit theorems Ark. Mat. 42 13-29
[3]  
Rodgers B(1992)On gaps between squarefree numbers. II J. London Math. Soc. (2) 45 215-221
[4]  
Blei R(2018)Extremal properties of product sets Proc. Steklov Inst. Math. 303 220-226
[5]  
Janson S(2013)On the limit distributions of some sums of a random multiplicative function J. Reine Angew. Math. 678 95-124
[6]  
Filaseta M(2010)Hankel forms Studia Math. 198 79-84
[7]  
Trifonov O(1985)Integers free of large prime divisors in short intervals Quart. J. Math. Oxford Ser. (2) 36 57-69
[8]  
Ford K(1974)On the intervals between numbers that are sums of two squares. III J. Reine Angew. Math. 267 207-218
[9]  
Harper A J(2011)Summation of a random multiplicative function on numbers having few prime factors Math. Proc. Cambridge Philos. Soc. 150 193-214
[10]  
Helson H(2023)On the random Chowla conjecture Geom. Funct. Anal. 33 749-777