mResU-Net: multi-scale residual U-Net-based brain tumor segmentation from multimodal MRI

被引:0
作者
Pengcheng Li
Zhihao Li
Zijian Wang
Chaoxiang Li
Monan Wang
机构
[1] Harbin University of Science and Technology,School of Mechanical and Power Engineering
来源
Medical & Biological Engineering & Computing | 2024年 / 62卷
关键词
Brain tumor segmentation; Multi-scale Residual U-Net; BraTS; Multimodal MRI;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:641 / 651
页数:10
相关论文
共 70 条
  • [1] Zeng T(2017)DeepEM3D, approaching human-level performance on 3D anisotropic EM image segmentation Bioinformatics 33 2555-2562
  • [2] Wu B(2015)The multimodal brain tumor image segmentation benchmark (BRATS) IEEE Trans Med Imaging 34 1993-2024
  • [3] Ji S(2021)nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation Nature Methods 18 203-211
  • [4] Menze BH(2019)Efficient brain tumor segmentation with multiscale two-pathway-group conventional neural networks IEEE J Biomed Heal Informatics 23 1911-1919
  • [5] Jakab A(2017)Efficient multiscale 3D CNN with fully connected CRF for accurate brain lesion segmentation Med Image Anal 36 61-78
  • [6] Bauer S(2018)Road extraction by deep residual u-net IEEE Geosci Remote Sens Lett 15 749-753
  • [7] Kalpathy-Cramer J(2020)A novel approach for fully automatic intra-tumor segmentation with 3D U-Net architecture for gliomas Front Comput Neurosci 14 1-11
  • [8] Farahani K(2020)Inter-slice context residual learning for 3D medical image segmentation IEEE Trans Med Imaging 40 661-672
  • [9] Kirby J(2020)Bu-Net: brain tumor segmentation using modified U-Net architecture Electronics (Switzerland) 9 1-12
  • [10] Isensee F(2021)BrainSegNet: brain tumor MR image segmentation via enhanced encoder–decoder network Diagnostics 11 169-1848