Physical properties and microstructures of La1-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{1-{x}}$$\end{document}Prx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{{x}}$$\end{document}PO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_4$$\end{document} monazite-ceramics

被引:0
作者
Anja Thust
Antje Hirsch
Eiken Haussühl
Nadine Schrodt
Lise Loison
Petra Schott
Lars Peters
Georg Roth
Björn Winkler
机构
[1] Goethe-Universität,Institut für Geowissenschaften
[2] RWTH Aachen University,Institut für Kristallographie
[3] RWTH Aachen University,Institut für Gesteinshüttenkunde
关键词
Monazite; Sintering; Microstructure; Thermal expansion; Elastic property;
D O I
10.1007/s00269-017-0921-2
中图分类号
学科分类号
摘要
Synthetic La1-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{1-{x}}$$\end{document}Prx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{{x}}$$\end{document}PO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_4$$\end{document} monazite-type powders and ceramics with 0 ≤\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le$$\end{document}x≤\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le$$\end{document} 1 were analysed by scanning electron microscopy, high-temperature powder X-ray diffraction, dilatometry, and plane wave ultrasound spectroscopy. Ceramics were synthesised in a two-step sintering process at 1273 and 1573 K. Final densities were up to 99.3% of the theoretical densities. Each sample shows a homogeneous distribution of grain sizes, which increase with increasing sintering temperature. Grain sizes also depend on composition, with intermediate compositions yielding the largest grains. In-situ high-temperature powder X-ray diffraction shows that the volumetric thermal expansion coefficients of the monazite powders decrease with increasing Pr content. This behavior is not observed in dilatometry measurements of the bulk samples (ceramics) because their thermal expansion mainly depends on their density. Elastic properties show the same dependence on the density.
引用
收藏
页码:323 / 332
页数:9
相关论文
共 161 条
[1]  
Arbeck D(2010)Piezoelastic properties of retgersite determined by ultrasonic measurements Eur Phys J B 73 167-175
[2]  
Haussühl E(2014)Thermal expansion behaviour of a versatile monazite phase with simulated HLW: a high temperature X-ray diffraction study Thermochim Acta 581 54-61
[3]  
Bayarjagal L(2016)Schottky contribution to the heat capacity of monazite type (La, Pr)PO Chem Phy Lett 654 97-102
[4]  
Winkler B(2002) from low temperature calorimetry and fluorescence measurements Rev Mineral Geochem 48 87-121
[5]  
Paulsen N(2006)Synthesis, structure, and properties of monazite, pretulite, and xenotime J Eur Ceram Soc 26 279-287
[6]  
Haussühl S(2007)Sintering and microstructure of rare earth phosphate ceramics REPO Inorg Chem 46 10372-10382
[7]  
Milman V(2011) with RE = La, Ce or Y J Eur Ceram Soc 31 941-976
[8]  
Asuvathraman R(2013)Solid-state synthesis of monazite-type compounds containing tetravalent elements Am Mineral 98 833-847
[9]  
Kutty KVG(2013)Crystal chemistry of the monazite structure Am Mineral 98 833-847
[10]  
Bauer JD(1999)Monazite as a promising long-term radioactive waste matrix: benefits of high-structural flexibility and chemical durability Proc Natl Acad Sci USA 96 3432-3439