Domain dependence of solutions to the boundary value problem for equations of mixtures of compressible viscous fluids

被引:0
作者
Zhalnina A.A. [1 ]
Kucher N.A. [1 ]
机构
[1] Kemerovo State University, ul. Krasnaya 6, Kemerovo
关键词
boundary value problem; conjugate problem; flow around an obstacle; mixture of viscous compressible fluids;
D O I
10.1134/S1990478917010161
中图分类号
学科分类号
摘要
Under study is the dependence of solutions of an inhomogeneous boundary value problem for a system of equations of mixtures of compressible viscous fluids on the shape of the flow domain. The obtained results can be used to proof the differentiability of solutions and functionals of the solutions (e.g., the drag functional) with respect to a parameter that characterizes the shape variations of an obstacle in the flow. © 2017, Pleiades Publishing, Ltd.
引用
收藏
页码:145 / 155
页数:10
相关论文
共 8 条
[1]  
Zhalnina A.A., Kucher N.A., On the Well-Posedness of an Inhomogeneous Boundary Value Problem for the Equations of Mixtures of Viscous Compressible Fluids, Sibir. Zh. Industr. Mat., 18, 3, pp. 26-39, (2015)
[2]  
Rajagopal K.R., Tao L., Mechanics of Mixtures, (1995)
[3]  
Kraiko A.N., Nigmatulin R.I., Starkov V.K., Sterlin L.E., Mechanics of Multiphase Media in Itogi Nauki. Gidromechanika, pp. 93-174, (1972)
[4]  
Nigmatulin R.I., Dynamics of Multiphase Media, (1990)
[5]  
Sobolev S.L., Some Applications of Functional Analysis in Mathematical Physics, (1991)
[6]  
Berg J., Lofstrom J., Interpolation Spaces. An Introduction, (1980)
[7]  
Plotnikov P., Sokolowski J., Compressible Navier–Stokes Equations: Theory and Shape Optimization, (2012)
[8]  
Galdi G., An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Steady-State Problems, (2011)