Lévy Langevin Monte Carlo

被引:0
作者
David Oechsler
机构
[1] Technische Universität Dresden,Institut für Mathematische Stochastik
[2] Center of Scalable Data Analytics and Artificial Intelligence (ScDS.AI),undefined
来源
Statistics and Computing | 2024年 / 34卷
关键词
Langevin Monte Carlo; Lévy processes; Stochastic differential equations; Invariant distributions; Limiting distributions; Primary 60G51; 60H10; 60G10; Secondary 65C05;
D O I
暂无
中图分类号
学科分类号
摘要
Analogously to the well-known Langevin Monte Carlo method, in this article we provide a method to sample from a target distribution π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\pi }$$\end{document} by simulating a solution of a stochastic differential equation. Hereby, the stochastic differential equation is driven by a general Lévy process which—unlike the case of Langevin Monte Carlo—allows for non-smooth targets. Our method will be fully explored in the particular setting of target distributions supported on the half-line (0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,\infty )$$\end{document} and a compound Poisson driving noise. Several illustrative examples conclude the article.
引用
收藏
相关论文
共 25 条
[1]  
Eliazar I(2003)Lévy-driven Langevin systems: targeted stochasticity J. Stat. Phys. 111 739-768
[2]  
Klafter J(2021)Approximation of heavy-tailed distributions via stable-driven SDEs Bernoulli 27 2040-2068
[3]  
Huang L-J(2018)Solutions of Lévy-driven SDEs with unbounded coefficients as Feller processes Proc. Am. Math. Soc. 146 3591-3604
[4]  
Majka MB(1992)Stability of Markovian processes I: Criteria for discrete-time chains Adv. Appl. Prob. 24 542-574
[5]  
Wang J(1993)Stability of Markovian processes II: Continuous-time processes and sampled chains Adv. Appl. Prob. 25 487-517
[6]  
Kühn F(1993)Stability of Markovian processes III: Foster–Lyapunov criteria for continuous time processes Adv. Appl. Prob. 25 518-548
[7]  
Meyn SP(2012)Exponential ergodicity and regularity for equations with Lévy noise Stoch. Process. Their Appl 122 106-133
[8]  
Tweedie RL(2001)Fractional Fokker-Planck equation for nonlinear stochastic differential equations driven by non-Gaussian Lévy stable noises J. Math. Phys. 42 200-212
[9]  
Meyn SP(2009)Ergodicity of the finite and infinite dimensional Stoch. Anal. Appl. 27 797-824
[10]  
Tweedie RL(2023)-stable systems Bernoulli 29 1933-1958