Connectivity Preserving Multivalued Functions in Digital Topology

被引:0
作者
Laurence Boxer
P. Christopher Staecker
机构
[1] Niagara University,Department of Computer and Information Sciences
[2] State University of New York at Buffalo,Department of Computer Science and Engineering
[3] Fairfield University,Department of Mathematics
来源
Journal of Mathematical Imaging and Vision | 2016年 / 55卷
关键词
Digital topology; Digital image; Continuous multivalued function; Shy map; Morphological operators; Retraction; Simple point;
D O I
暂无
中图分类号
学科分类号
摘要
We study connectivity preserving multivalued functions (Kovalevsky in A new concept for digital geometry, shape in picture, 1994) between digital images. This notion generalizes that of continuous multivalued functions (Escribano et al. in Discrete geometry for computer imagery, lecture notes in computer science, 2008; Escribano et al. in J Math Imaging Vis 42:76–91, 2012) studied mostly in the setting of the digital plane Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^2$$\end{document}. We show that connectivity preserving multivalued functions, like continuous multivalued functions, are appropriate models for digital morphological operations. Connectivity preservation, unlike continuity, is preserved by compositions, and generalizes easily to higher dimensions and arbitrary adjacency relations.
引用
收藏
页码:370 / 377
页数:7
相关论文
共 11 条
[1]  
Boxer L(1994)Digitally continuous functions Pattern Recogn. Lett. 15 833-839
[2]  
Boxer L(1999)A classical construction for the digital fundamental group Pattern Recogn. Lett. 10 51-62
[3]  
Boxer L(2005)Properties of digital homotopy J. Math. Imaging Vis. 22 19-26
[4]  
Boxer L(2014)Remarks on digitally continuous multivalued functions J. Adv. Math. 9 1755-1762
[5]  
Escribano C(2012)Digitally continuous multivalued functions, morphological operations and thinning algorithms J. Math. Imaging Vis. 42 76-91
[6]  
Giraldo A(2015)On the composition of digitally continuous multivalued functions J. Math. Imaging Vis. 58 196-209
[7]  
Sastre M(1979)Digital topology Am Math Mon 86 621-630
[8]  
Giraldo A(1987)‘Continuous’ functions on digital images Pattern Recogn. Lett. 4 177-184
[9]  
Sastre M(undefined)undefined undefined undefined undefined-undefined
[10]  
Rosenfeld A(undefined)undefined undefined undefined undefined-undefined