Weak and Strong Subgradients of Set-Valued Maps

被引:0
|
作者
Elvira Hernández
Luis Rodríguez-Marín
机构
[1] UNED,Departamento de Matemática Aplicada
[2] E.T.S.I. Industriales,undefined
来源
Journal of Optimization Theory and Applications | 2011年 / 149卷
关键词
Subgradients; Set-valued maps; Optimality conditions; Set optimization;
D O I
暂无
中图分类号
学科分类号
摘要
We consider weak subgradients of a set-valued map and present a new notion of strong subgradient. We study their properties and compare our constructions and results with other developments. We give existence conditions of both types and establish several optimality conditions in terms of set optimization.
引用
收藏
页码:352 / 365
页数:13
相关论文
共 50 条
  • [31] Convexity Criteria for Set-Valued Maps
    Pham Huu Sach
    Nguyen Dong Yen
    Set-Valued Analysis, 1997, 5 (1): : 37 - 45
  • [32] APPROXIMATION OF NONCONVEX SET-VALUED MAPS
    BENELMECHAIEKH, H
    DEGUIRE, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 312 (05): : 379 - 384
  • [33] STABLE APPROXIMATIONS OF SET-VALUED MAPS
    AUBIN, JP
    WETS, RJB
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1988, 5 (06): : 519 - 535
  • [34] NASH EQUILIBRIUM FOR SET-VALUED MAPS
    GUILLERME, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 187 (03) : 705 - 715
  • [35] Weak subdifferential of set-valued mappings
    Song, W
    OPTIMIZATION, 2003, 52 (03) : 263 - 276
  • [36] TOPOLOGICAL ENTROPY FOR SET-VALUED MAPS
    Carrasco-Olivera, Dante
    Metzger Alvan, Roger
    Morales Rojas, Carlos Arnoldo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (10): : 3461 - 3474
  • [37] Invariant measures for set-valued maps
    Gorbachev, A. N.
    Stepin, A. M.
    RUSSIAN MATHEMATICAL SURVEYS, 2009, 64 (06) : 1136 - 1138
  • [38] Convexity criteria for set-valued maps
    Sach, PH
    Yen, ND
    SET-VALUED ANALYSIS, 1997, 5 (01): : 37 - 45
  • [39] Set-valued maps for image segmentation
    Lorenz, Thomas
    Computing and Visualization in Science, 2001, 4 (01) : 41 - 57
  • [40] AN INVERSION THEOREM FOR SET-VALUED MAPS
    AZE, D
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1988, 37 (03) : 411 - 414