Boundedness and Compactness for the Commutator of the ω-Type Calderón-Zygmund Operator on Lorentz Space

被引:0
作者
Xiangxing Tao
Yuan Zeng
Xiao Yu
机构
[1] Zhejiang University of Science and Technology,Department of Mathematics
[2] Shangrao Normal University,Department of Mathematics
来源
Acta Mathematica Scientia | 2023年 / 43卷
关键词
-type Calderón-Zygmund operator; commutators; Lorentz space; homogeneous space; 42B20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the authors consider the ω-type Calderón-Zygmund operator Tω and the commutator [b, Tω] generated by a symbol function b on the Lorentz space Lp,r(X) over the homogeneous space (X, d, μ). The boundedness and the compactness of the commutator [b, Tω] on Lorentz space Lp,r(X) are founded for any p ∈ (1, ∞) and r ∈ [1, ∞).
引用
收藏
页码:1587 / 1602
页数:15
相关论文
共 24 条
[1]  
Calderón A P(1965)Commutators of singular integral operators Proc Natl Acad Sci USA 53 1092-1099
[2]  
Pérez C(1995)Endpoint estimates for commutators of singular integral operators J Funct Anal 128 163-185
[3]  
Yabuta K(1985)Generalization of Calderón-Zygmund operators Studia Math 82 17-31
[4]  
Bramanti M(1996)Commutators of singular integrals on homogeneous spaces Bollettino della Unione Matematica Italiana-B 10 843-884
[5]  
Cerutti M C(1979)Lipschitz functions on spaces of homogeneous type Adv Math 33 257-270
[6]  
Macías R(2021)Lorentz boundedness and compactness characterization of integral commutators on spaces of homogeneous type Nonlinear Anal 203 112162-635
[7]  
Segovia C(1976)Factorization theorems for Hardy spaces in several variables Ann of Math 103 611-171
[8]  
Dao N A(1978)On the compactness of operators of Hankel type Tohoku Math J 30 163-270
[9]  
Krantz S G(1978)Mean oscillation and commutators of singular integral operators Ark Mat 16 263-657
[10]  
Coifman R(2001)Boundedness and compactness of integral operators on spaces of homogeneous type and applications, II J Math Anal Appl 258 642-426