The Discontinuous Galerkin Method for Two-dimensional Hyperbolic Problems Part II: A Posteriori Error Estimation

被引:0
作者
Slimane Adjerid
Mahboub Baccouch
机构
[1] Virginia Polytechnic Institute and State University,Department of Mathematics
来源
Journal of Scientific Computing | 2009年 / 38卷
关键词
Discontinuous Galerkin method; Hyperbolic problems; Superconvergence; error estimation;
D O I
暂无
中图分类号
学科分类号
摘要
In this manuscript we construct simple, efficient and asymptotically correct a posteriori error estimates for discontinuous finite element solutions of scalar first-order hyperbolic partial differential problems on triangular meshes. We explicitly write the basis functions for the error spaces corresponding to several finite element spaces. The leading term of the discretization error on each triangle is estimated by solving a local problem. We also show global superconvergence for discontinuous solutions on triangular meshes. The a posteriori error estimates are tested on several linear and nonlinear problems to show their efficiency and accuracy under mesh refinement for smooth and discontinuous solutions.
引用
收藏
页码:15 / 49
页数:34
相关论文
共 48 条
[1]  
Adjerid S.(2007)The discontinuous Galerkin method for two-dimensional hyperbolic problems Part I: Superconvergence error analysis J. Sci. Comput. 33 75-113
[2]  
Baccouch M.(2002)A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems Comput. Methods Appl. Mech. Eng. 191 1097-1112
[3]  
Adjerid S.(2005)Superconvergence of discontinuous finite element solutions for transient convection-diffusion problems J. Sci. Comput. 22 5-24
[4]  
Devine K.D.(2002)A posteriori discontinuous finite element error estimation for two-dimensional hyperbolic problems Comput. Methods Appl. Mech. Eng. 191 5877-5897
[5]  
Flaherty J.E.(2006)Superconvergence of discontinuous finite element solutions for nonlinear hyperbolic problems Comput. Methods Appl. Mech. Eng. 195 3331-3346
[6]  
Krivodonova L.(2003)A superconvergence result for discontinuous Galerkin methods applied to elliptic problems Comput. Methods Appl. Mech. Eng. 192 4675-4685
[7]  
Adjerid S.(2006)Superconvergence of the numerical traces for discontinuous Galerkin and hybridized methods for convection-diffusion problems in one space dimension Math. Comput. 76 67-96
[8]  
Klauser A.(1996)Error estimates for finite element methods for nonlinear conservation laws SIAM J. Numer. Anal. 33 522-554
[9]  
Adjerid S.(1989)TVB Runge-Kutta local projection discontinuous Galerkin methods for scalar conservation laws II: General framework Math. Comput. 52 411-435
[10]  
Massey T.C.(1998)The local discontinuous Galerkin finite element method for convection-diffusion systems SIAM J. Numer. Anal. 35 2240-2463