Benjamin–Feir Instability of Stokes Waves in Finite Depth

被引:0
|
作者
Massimiliano Berti
Alberto Maspero
Paolo Ventura
机构
[1] International School for Advanced Studies (SISSA),
来源
Archive for Rational Mechanics and Analysis | 2023年 / 247卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Whitham and Benjamin predicted in 1967 that small-amplitude periodic traveling Stokes waves of the 2d-gravity water waves equations are linearly unstable with respect to long-wave perturbations, if the depth h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathtt h} $$\end{document} is larger than a critical threshold hWB≈1.363\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\texttt{h}_{\scriptscriptstyle {\textsc {WB}}}\approx 1.363 $$\end{document}. In this paper, we completely describe, for any finite value of h>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathtt h >0 $$\end{document}, the four eigenvalues close to zero of the linearized equations at the Stokes wave, as the Floquet exponent μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is turned on. We prove, in particular, the existence of a unique depth hWB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \texttt{h}_{\scriptscriptstyle {\textsc {WB}}}$$\end{document}, which coincides with the one predicted by Whitham and Benjamin, such that, for any 0<h<hWB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 0< \mathtt h < \texttt{h}_{\scriptscriptstyle {\textsc {WB}}}$$\end{document}, the eigenvalues close to zero are purely imaginary and, for any h>hWB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathtt h > \texttt{h}_{\scriptscriptstyle {\textsc {WB}}}$$\end{document}, a pair of non-purely imaginary eigenvalues depicts a closed figure “8”, parameterized by the Floquet exponent. As h→hWB+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathtt h} \rightarrow \texttt{h}_{\scriptscriptstyle {\textsc {WB}}}^{\, +} $$\end{document} the “8” collapses to the origin of the complex plane. The complete bifurcation diagram of the spectrum is not deduced as in deep water, since the limits h→+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \texttt{h}\rightarrow +\infty $$\end{document} (deep water) and μ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mu \rightarrow 0 $$\end{document} (long waves) do not commute. In finite depth, the four eigenvalues have all the same size O(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\mu )$$\end{document}, unlike in deep water, and the analysis of their splitting is much more delicate, requiring, as a new ingredient, a non-perturbative step of block-diagonalization. Along the whole proof, the explicit dependence of the matrix entries with respect to the depth h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\texttt{h}$$\end{document} is carefully tracked.
引用
收藏
相关论文
共 50 条
  • [1] Benjamin-Feir Instability of Stokes Waves in Finite Depth
    Berti, Massimiliano
    Maspero, Alberto
    Ventura, Paolo
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2023, 247 (05)
  • [2] Benjamin–Feir instability of Stokes waves
    Berti M.
    Maspero A.
    Ventura P.
    Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni, 2022, 33 (02): : 399 - 412
  • [3] Full description of Benjamin-Feir instability of stokes waves in deep water
    Massimiliano Berti
    Alberto Maspero
    Paolo Ventura
    Inventiones mathematicae, 2022, 230 : 651 - 711
  • [4] Full description of Benjamin-Feir instability of stokes waves in deep water
    Berti, Massimiliano
    Maspero, Alberto
    Ventura, Paolo
    INVENTIONES MATHEMATICAE, 2022, 230 (02) : 651 - 711
  • [5] Benjamin-Feir instability of Rossby waves on a jet
    Esler, JG
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2004, 130 (600) : 1611 - 1630
  • [6] Benjamin-Feir instability in nonlinear dispersive waves
    Helal, M. A.
    Seadawy, A. R.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (11) : 3557 - 3568
  • [7] The Permanent Downshifting at Later Stages of Benjamin–Feir Instability of Waves
    I. Shugan
    S. Kuznetsov
    Y. Saprykina
    H. H. Hwung
    R. Y. Yang
    Y.-Y. Chen
    Pure and Applied Geophysics, 2019, 176 : 483 - 500
  • [8] The Permanent Downshifting at Later Stages of Benjamin-Feir Instability of Waves
    Shugan, I.
    Kuznetsov, S.
    Saprykina, Y.
    Hwung, H. H.
    Yang, R. Y.
    Chen, Y. -Y.
    PURE AND APPLIED GEOPHYSICS, 2019, 176 (01) : 483 - 500
  • [9] Stabilizing the Benjamin-Feir instability
    Segur, H
    Henderson, D
    Carter, J
    Hammack, J
    Li, CM
    Pheiff, D
    Socha, K
    JOURNAL OF FLUID MECHANICS, 2005, 539 : 229 - 271
  • [10] A proof of the Benjamin-Feir instability
    Bridges, TJ
    Mielke, A
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 133 (02) : 145 - 198