Tate conjecture for products of Fermat varieties over finite fields

被引:0
作者
Rin Sugiyama
机构
[1] Universität Duisburg-Essen,Fakultät Mathematik
来源
Manuscripta Mathematica | 2014年 / 144卷
关键词
14G15; 11G25; 14H52;
D O I
暂无
中图分类号
学科分类号
摘要
We prove under some assumptions that the Tate conjecture holds for products of Fermat varieties of different degrees. The method is to use a combinatorial property of eigenvalues of geometric Frobenius acting on ℓ-adic étale cohomology.
引用
收藏
页码:421 / 438
页数:17
相关论文
共 28 条
[21]  
Shioda T.(1994)Groupes de Chow et Proc. Symp. Pure Math. 55 71-83
[22]  
Shioda T.(1949)-théorie de variétés sur un corps fini Bull. Am. Math. Soc. 55 497-508
[23]  
Schneider P.(undefined)Proof of the Tate conjecture for products of elliptic curves over finite fields undefined undefined undefined-undefined
[24]  
Soulé C.(undefined)Endomorphisms of abelian varieties over finite fields undefined undefined undefined-undefined
[25]  
Spiess M.(undefined)Conjectures on algebraic cycles in ℓ-adic cohomology undefined undefined undefined-undefined
[26]  
Tate J.(undefined)Number of solutions of equations in finite fields undefined undefined undefined-undefined
[27]  
Tate J.(undefined)undefined undefined undefined undefined-undefined
[28]  
Weil A.(undefined)undefined undefined undefined undefined-undefined