Tate conjecture for products of Fermat varieties over finite fields

被引:0
作者
Rin Sugiyama
机构
[1] Universität Duisburg-Essen,Fakultät Mathematik
来源
Manuscripta Mathematica | 2014年 / 144卷
关键词
14G15; 11G25; 14H52;
D O I
暂无
中图分类号
学科分类号
摘要
We prove under some assumptions that the Tate conjecture holds for products of Fermat varieties of different degrees. The method is to use a combinatorial property of eigenvalues of geometric Frobenius acting on ℓ-adic étale cohomology.
引用
收藏
页码:421 / 438
页数:17
相关论文
共 28 条
[11]  
Geisser T.(2005)Complexe de De Rham-Witt et cohomologie cristalline Math. Ann. 331 173-201
[12]  
Levine M.(2011)Continuous Étale cohomology J. Math. Sci. Univ. Tokyo 17 419-453
[13]  
Illusie L.(1986)Équivalences rationnelle et numérique sur certaines variétés de type Abélien sur un corps fini Am. J. Math. 108 297-360
[14]  
Jannsen U.(1979)Chow groups are finite dimensional, in some sense Tôhoku J. Math. 31 97-115
[15]  
Kahn B.(1979)A generalization of the Artin–Tate formula for fourfolds Proc. Jpn. Acad. 55 111-114
[16]  
Kimura S.(1979)Values of zeta functions of varieties over finite fields Math. Ann. 245 175-184
[17]  
Kohmoto D.(1982)On Fermat varieties Comp. Math. 46 133-143
[18]  
Milne J.S.(1984)The Hodge conjecture and the Tate conjecture for Fermat varieties Math. Ann. 268 317-345
[19]  
Shioda T.(1999)The Hodge conjecture for Fermat varieties Math. Ann. 314 285-290
[20]  
Katsura T.(1966)On the values of the zeta function of a variety over a finite field Invent. Math. 2 134-144