Tate conjecture for products of Fermat varieties over finite fields

被引:0
作者
Rin Sugiyama
机构
[1] Universität Duisburg-Essen,Fakultät Mathematik
来源
Manuscripta Mathematica | 2014年 / 144卷
关键词
14G15; 11G25; 14H52;
D O I
暂无
中图分类号
学科分类号
摘要
We prove under some assumptions that the Tate conjecture holds for products of Fermat varieties of different degrees. The method is to use a combinatorial property of eigenvalues of geometric Frobenius acting on ℓ-adic étale cohomology.
引用
收藏
页码:421 / 438
页数:17
相关论文
共 28 条
[1]  
Báyer P.(1978)On values of zeta functions and ℓ-adic Euler characteristics Invent. Math. 50 35-64
[2]  
Neukirch J.(1986)Algebraic cycles and higher Adv. Math. 64 267-304
[3]  
Bloch S.(1983)-theory Duke Math. J. 50 763-801
[4]  
Colliot-Thélène J.-L.(1974)Torsion dans le groupe de Chow de codimension deux Publ. Math. Inst. Hautes Étude Sci. 43 273-308
[5]  
Sansuc J.-J.(2002)La conjecture de Weil I Ann. Sci. École Norm. Sup. (4) 35 773-875
[6]  
Soulé C.(1998)The spectral sequence relating algebraic K-theory to motivic cohomology K-theory 13 109-122
[7]  
Deligne P.(2000)Tate’s conjecture, algebraic cycles and rational Invent. Math. 139 459-493
[8]  
Friedlander E.M.(1979)-theory in characteristic Ann. Sci. École Norm. Sup. (4) 12 501-661
[9]  
Suslin A.(1988)The Math. Ann. 280 207-245
[10]  
Geisser T.(2003)-theory of fields in characteristic Ann. Sci. École. Norm. Sup. (4) 36 977-1002