Mortar Coupling of hp-Discontinuous Galerkin and Boundary Element Methods for the Helmholtz Equation

被引:0
作者
Christoph Erath
Lorenzo Mascotto
Jens M. Melenk
Ilaria Perugia
Alexander Rieder
机构
[1] University College of Teacher Education Vorarlberg,Dipartimento di Matematica e Applicazioni
[2] Università di Milano Bicocca,Fakultät für Mathematik
[3] Universität Wien,Institut für Analysis und Scientific Computing
[4] IMATI-CNR,undefined
[5] TU Wien,undefined
来源
Journal of Scientific Computing | 2022年 / 92卷
关键词
Discontinuous Galerkin method; Boundary element method; Mortar coupling; Helmholtz equation; Variable sound speed;
D O I
暂无
中图分类号
学科分类号
摘要
We design and analyze a coupling of a discontinuous Galerkin finite element method with a boundary element method to solve the Helmholtz equation with variable coefficients in three dimensions. The coupling is realized with a mortar variable that is related to an impedance trace on a smooth interface. The method obtained has a block structure with nonsingular subblocks. We prove quasi-optimality of the h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}- and p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-versions of the scheme, under a threshold condition on the approximability properties of the discrete spaces. Amongst others, an essential tool in the analysis is a novel discontinuous-to-continuous reconstruction operator on tetrahedral meshes with curved faces.
引用
收藏
相关论文
共 113 条
[1]  
Ainsworth M(2004)Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods J. Comput. Phys. 198 106-130
[2]  
Aurada M(2017)Local inverse estimates for non-local boundary integral operators Math. Comput. 86 2651-2686
[3]  
Feischl M(1989)Optimal finite-element interpolation on curved domains SIAM J. Numer. Anal. 26 1212-1240
[4]  
Führer T(2007)Continuous interior penalty Math. Comput. 76 1119-1140
[5]  
Karkulik M(2008)-finite element methods for advection and advection–diffusion equations IMA J. Numer. Anal. 28 225-244
[6]  
Melenk JM(2000)On the coupling of local discontinuous Galerkin and boundary element methods for non-linear exterior transmission problems SIAM J. Numer. Anal. 38 1676-1706
[7]  
Praetorius D(2012)An a priori error analysis of the local discontinuous Galerkin method for elliptic problems Acta Numer. 21 89-305
[8]  
Bernardi C(2013)Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering SIAM J. Numer. Anal. 51 2166-2188
[9]  
Burman E(2012)A hybridizable discontinuous Galerkin method for the Helmholtz equation with high wave number SIAM J. Numer. Anal. 50 2778-2801
[10]  
Ern A(2012)Coupling of Raviart–Thomas and hybridizable discontinuous Galerkin methods with BEM IMA J. Numer. Anal. 32 765-794