Relative entanglement entropies in 1 + 1-dimensional conformal field theories

被引:0
作者
Paola Ruggiero
Pasquale Calabrese
机构
[1] International School for Advanced Studies (SISSA) and INFN,
来源
Journal of High Energy Physics | / 2017卷
关键词
Conformal Field Theory; Field Theories in Lower Dimensions;
D O I
暂无
中图分类号
学科分类号
摘要
We study the relative entanglement entropies of one interval between excited states of a 1+1 dimensional conformal field theory (CFT). To compute the relative entropy S(ρ1∥ρ0) between two given reduced density matrices ρ1 and ρ0 of a quantum field theory, we employ the replica trick which relies on the path integral representation of Tr(ρ1ρ0n − 1) and define a set of Rényi relative entropies Sn(ρ1∥ρ0). We compute these quantities for integer values of the parameter n and derive via the replica limit the relative entropy between excited states generated by primary fields of a free massless bosonic field. In particular, we provide the relative entanglement entropy of the state described by the primary operator i∂ϕ, both with respect to the ground state and to the state generated by chiral vertex operators. These predictions are tested against exact numerical calculations in the XX spin-chain finding perfect agreement.
引用
收藏
相关论文
共 115 条
  • [1] Calabrese P(2009)Entanglement entropy in extended quantum systems J. Phys. A 42 500301-undefined
  • [2] Cardy J(2010)Area laws for the entanglement entropy — a review Rev. Mod. Phys. 82 277-undefined
  • [3] Doyon B(2016)Quantum entanglement in condensed matter systems Phys. Rept. 646 1-undefined
  • [4] Eisert J(1994)Geometric and renormalized entropy in conformal field theory Nucl. Phys. B 424 443-undefined
  • [5] Cramer M(2009)Entanglement entropy and conformal field theory J. Phys. A 42 504005-undefined
  • [6] Plenio MB(2008)Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification of Topological Order in Non-Abelian Fractional Quantum Hall Effect States Phys. Rev. Lett. 101 010504-undefined
  • [7] Laflorencie N(2016)Quantum thermalization through entanglement in an isolated many-body system Science 353 794-undefined
  • [8] Holzhey C(2012)Entanglement negativity in quantum field theory Phys. Rev. Lett. 109 130502-undefined
  • [9] Larsen F(1986)A Quantum Source of Entropy for Black Holes Phys. Rev. D 34 373-undefined
  • [10] Wilczek F(1993)Entropy and area Phys. Rev. Lett. 71 666-undefined