Two Phases of the Non-Commutative Quantum Mechanics with the Generalized Uncertainty Relations

被引:0
作者
Won Sang Chung
机构
[1] Gyeongsang National University,Department of Physics and Research Institute of Natural Science, College of Natural Science
来源
International Journal of Theoretical Physics | 2016年 / 55卷
关键词
Noncommutative plane; Generalized uncertainty relation; Harmonic oscillator model;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the quantum mechanics on the noncommutative plane with the generalized uncertainty relations Δx1Δx2≥θ2,Δp1Δp2≥θ̄2,ΔxiΔpi≥ℏ2,Δx1Δp2≥η2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\Delta } x_{1} {\Delta } x_{2} \ge \frac {\theta }{2}, {\Delta } p_{1} {\Delta } p_{2} \ge \frac {\bar {\theta }}{2}, {\Delta } x_{i} {\Delta } p_{i} \ge \frac {\hbar }{2}, {\Delta } x_{1} {\Delta } p_{2} \ge \frac {\eta }{2}$\end{document}. We show that the model has two essentially different phases which is determined by κ=1+1ℏ2(η2−θθ̄)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\kappa = 1 + \frac {1}{\hbar ^{2} } (\eta ^{2} - \theta \bar {\theta })$\end{document}. We construct a operator π̂i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat {\pi }_{i}$\end{document} commuting with x̂j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\hat {x}_{j} $\end{document} and discuss the harmonic oscillator model in two dimensional non-commutative space for three case κ > 0, κ = 0, κ < 0. Finally, we discuss the thermodynamics of a particle whose hamiltonian is related to the harmonic oscillator model in two dimensional non-commutative space.
引用
收藏
页码:2174 / 2181
页数:7
相关论文
共 48 条
  • [1] Snyder H(1947)undefined Phys. Rev. 71 38-undefined
  • [2] Yang C(1947)undefined Phys. Rev. 72 874-undefined
  • [3] Connes A(1986)undefined Publ. IHES 62 257-undefined
  • [4] Dubois-Violete M(1988)undefined Sci. Paris 307 403-undefined
  • [5] Acad CR(1990)undefined J. Math. Phys. 31 316-undefined
  • [6] Dubois-Violete M(1995)undefined Comm. Math. Phys. 172 187-undefined
  • [7] Kerner R(1999)undefined JHEP 9909 032-undefined
  • [8] Madore J(2001)undefined Phys. Rev. Lett. 86 2716-undefined
  • [9] Doplicher S(2001)undefined Phys. Rev. D64 067901-undefined
  • [10] Fredenhagen K(2001)undefined Phys. Lett. B505 267-undefined