Diameter Bounded Equal Measure Partitions of Ahlfors Regular Metric Measure Spaces

被引:0
作者
Giacomo Gigante
Paul Leopardi
机构
[1] University of Bergamo,
[2] University of Newcastle,undefined
来源
Discrete & Computational Geometry | 2017年 / 57卷
关键词
Partition; Measure; Diameter; Ahlfors regular; Metric measure space; Primary 52C22; Secondary 11K38; 28A75; 54E45; 65D30;
D O I
暂无
中图分类号
学科分类号
摘要
The algorithm devised by Feige and Schechtman for partitioning higher dimensional spheres into regions of equal measure and small diameter is combined with David’s and Christ’s constructions of dyadic cubes to yield a partition algorithm suitable to any connected Ahlfors regular metric measure space of finite measure.
引用
收藏
页码:419 / 430
页数:11
相关论文
共 23 条
[1]  
Assouad P(1983)Plongements lipschitziens dans Bull. Soc. Math. Fr. 111 429-448
[2]  
Brandolini L(2014)Quadrature rules and distribution of points on manifolds Ann. Sc. Norm. Super. Pisa Cl. Sci. 13 889-923
[3]  
Choirat C(1990)A Colloq. Math. 60 601-628
[4]  
Colzani L(1988) theorem with remarks on analytic capacity and the Cauchy integral Rev. Mat. Iberoam. 4 73-114
[5]  
Gigante G(2002)Morceaux de graphes lipschitziens et intégrales singulières sur une surface Random Struct. Algorithms 20 403-440
[6]  
Seri R(2009)On the optimality of the random hyperplane rounding technique for MAX CUT Electron. Trans. Numer. Anal. 35 1-16
[7]  
Travaglini G(2013)Diameter bounds for equal area partitions of the unit sphere Dolomit. Res. Notes Approx. 6 120-129
[8]  
Christ M(1994)Discrepancy, separation and Riesz energy of finite point sets on compact connected Riemannian manifolds Math. Res. Lett. 1 647-662
[9]  
David G(1997)Minimal discrete energy on the sphere Math. Intell. 19 5-11
[10]  
Feige U(1922)Distributing many points on a sphere Fundam. Math. 3 240-246