Young’s Inequality for the Twisted Convolution

被引:0
|
作者
P. K. Ratnakumar
机构
[1] Harish-Chandra Research Institute,
[2] A CI of Homi Bhabha National Institute,undefined
来源
Journal of Fourier Analysis and Applications | 2023年 / 29卷
关键词
Twisted convolution; Bilinear maps; boundedness; Young’s inequality; Primary 44A35; 44A15; Secondary 42B10; 42B20;
D O I
暂无
中图分类号
学科分类号
摘要
We characterise the triples (p, q, r) for which the bi-linear λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-twisted convolution map Bλ:(f,g)→f×λg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_\lambda : (f,g) \rightarrow f \times _\lambda \, g$$\end{document} is bounded from Lp(Cn)×Lq(Cn)→Lr(Cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(\mathbb C^n) \times L^q(\mathbb C^n) \rightarrow L^r(\mathbb C^n)$$\end{document} for 1≤p,q,r≤∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le p,q,r \le \infty $$\end{document}. This gives the analogue of Young’s inequality for the twisted convolution.
引用
收藏
相关论文
共 50 条
  • [1] Young's Inequality for the Twisted Convolution
    Ratnakumar, P. K.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2023, 29 (06)
  • [2] Young's inequality for convolution and its applications in convex- and set-valued analysis
    Sadowski, Jacek
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (02) : 1274 - 1294
  • [3] Wiener's Lemma for twisted convolution and Gabor frames
    Gröchenig, K
    Leinert, M
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (01) : 1 - 18
  • [4] On Young's inequality
    Alzer, Horst
    Kwong, Man Kam
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 469 (02) : 480 - 492
  • [5] On Lp → Lq boundedness of the twisted convolution operators
    Maity, Arup Kumar
    Ratnakumar, P. K.
    JOURNAL OF ANALYSIS, 2023, 31 (02): : 945 - 950
  • [6] On refined Young?s inequality
    Karamali, Gholamreza
    Harikrishnan, Panackal
    Moradi, Hamid Reza
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (47): : 677 - 683
  • [7] PRESENTATION OF YOUNG'S INEQUALITY
    Pavic, Zlatko
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2015, 6 (03): : 17 - 26
  • [8] A note on Young’s inequality
    S. S. Dragomir
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 : 349 - 354
  • [9] A refinement of Young's inequality
    Korus, P.
    ACTA MATHEMATICA HUNGARICA, 2017, 153 (02) : 430 - 435
  • [10] Young's inequality and trace
    Cho, Kazuki
    Sano, Takashi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (08) : 1218 - 1222