Unveiling π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\pi }$$\end{document}-tangle and quantum phase transition in the one-dimensional anisotropic XY model

被引:0
作者
Cheng-Cheng Liu
Shuai Xu
Juan He
Liu Ye
机构
[1] Anhui University,School of Physics and Material Science
关键词
Quantum entanglement; -tangle; Heisenberg XY model; Quantum phase transition;
D O I
10.1007/s11128-015-0982-4
中图分类号
学科分类号
摘要
In this paper, the relationship between π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\pi }$$\end{document}-tangle and quantum phase transition (QPT) is investigated by employing the quantum renormalization-group method in the one-dimensional anisotropic XY model. The results show that all the 1-tangles increase firstly and then decrease with the anisotropy parameter γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} increasing, and the Coffman–Kundu–Wootters monogamy inequality is always tenable for this system. The entanglement’s status of subsystems depends on its site position, and this proposition can be generalized to a multipartite system. Meanwhile, with the increasing of the size of the system, the π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\pi }$$\end{document}-tangle decreases slowly and tends to a fixed value finally. Additionally, it exhibits a QPT and a maximum value for the next-nearest-neighbor entanglement at the critical point in our model, which is different from the case of two-body system. After several iterations of the renormalization, the quantum entanglement measure can develop two saturated values, which are associated with two different phases: spin-fluid phase and the Néel phase. To gain further insight, the nonanalytic and scaling behaviors of π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\pi }$$\end{document}-tangle have also been analyzed in detail.
引用
收藏
页码:2013 / 2024
页数:11
相关论文
共 102 条
[1]  
Horodecki R(2009)Quantum entanglement Rev. Mod. Phys. 81 865-255
[2]  
Horodecki P(2000)Efficient scheme for two-atom entanglement and quantum information processing in cavity QED Phys. Rev. Lett. 85 2392-610
[3]  
Horodecki M(2000)Quantum information and computation Nature (London) 404 247-610
[4]  
Horodecki K(1964)On the EPR paradox Physics 1 195-576
[5]  
Zheng SB(2008)Quantum discord and the power of one qubit Phys. Rev. Lett. 100 050502-8478
[6]  
Guo GC(2002)Scaling of entanglement close to a quantum phase transition Nature (London) 416 608-3317
[7]  
Bennett CH(2002)Scaling of entanglement close to a quantum phase transition Nature 416 608-1153
[8]  
DiVincenzo DP(2004)Quantum phase transitions and bipartite entanglement Phys. Rev. Lett. 93 250404-undefined
[9]  
Bell JS(2002)Entanglement in a simple quantum phase transition Phys. Rev. A 66 032110-undefined
[10]  
Datta A(2003)Entanglement in quantum critical phenomena Phys. Rev. Lett. 90 227902-undefined