Parallelization Strategy for Elementary Morphological Operators on Graphs: Distance-Based Algorithms and Implementation on Multicore Shared-Memory Architecture

被引:0
|
作者
Imane Youkana
Jean Cousty
Rachida Saouli
Mohamed Akil
机构
[1] Université Paris-Est,Département d’Informatique
[2] Laboratoire d’Informatique Gaspard-Monge,undefined
[3] UMR 8049,undefined
[4] UPEMLV,undefined
[5] ESIEE Paris,undefined
[6] ENPC,undefined
[7] CNRS,undefined
[8] Université de Biskra,undefined
来源
Journal of Mathematical Imaging and Vision | 2017年 / 59卷
关键词
Graph-based mathematical morphology; Distance maps; Parallel algorithm; Multicores/multithreaded architectures;
D O I
暂无
中图分类号
学科分类号
摘要
This article focuses on the (unweighted) graph-based mathematical morphology operators presented in Cousty et al. (CVIU 117(4):370–385, 2013). These operators depend on a size parameter that specifies the number of iterations of elementary dilations/erosions. Thus, the associated running times increase with the size parameter, the algorithms running in O(λ.n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\lambda .n)$$\end{document} time, where n is the size of the underlying graph and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} is the size parameter. In this article, we present distance maps that allow us to recover (by thresholding) all considered dilations and erosions. The algorithms based on distance maps allow the operators to be computed with a single linear O(n) time iteration, without any dependence to the size parameter. Then, we investigate a parallelization strategy to compute these distance maps. The idea is to build iteratively the successive level-sets of the distance maps, each level-set being traversed in parallel. Under some reasonable assumptions about the graph and sets to be dilated, our parallel algorithm runs in O(n/p+Klog2p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n/p + K \log _2 p)$$\end{document} where n, p, and K are the size of the graph, the number of available processors, and the number of distinct level-sets of the distance map, respectively. Then, implementations of the proposed algorithm on a shared-memory multicore architecture are described and assessed on datasets of 45 images and 6 textured three-dimensional meshes, showing a reduction of the processing time by a factor up to 55 over the previously available implementations on a 8-core architecture.
引用
收藏
页码:136 / 160
页数:24
相关论文
共 1 条
  • [1] Parallelization Strategy for Elementary Morphological Operators on Graphs: Distance-Based Algorithms and Implementation on Multicore Shared-Memory Architecture
    Youkana, Imane
    Cousty, Jean
    Saouli, Rachida
    Akil, Mohamed
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2017, 59 (01) : 136 - 160