Existence and uniqueness of global solutions of on R2

被引:3
作者
Jiu Q. [1 ]
Liu J. [2 ]
机构
[1] Department of Mathematics, Capital Normal University
[2] Institute of Applied Mathematics, Chinese Academy of Sciencfles
关键词
Iteration; Nonlinear Schrödinger equations;
D O I
10.1007/BF02009551
中图分类号
学科分类号
摘要
In this paper, we consider the solutions of the nonlinear Schrödinger equations ∂u/∂t - iΔu + |u|Pu=f and u(x,0)=u 0(x), where u is defined on R+ x R2. We prove the existence and uniqueness of global weak solutions of the above equations. Lastly, we consider the special case: p=2, and we obtain the strong solutions.
引用
收藏
页码:414 / 424
页数:10
相关论文
共 10 条
[1]  
Lions J.L., Quelques Méthodes de Résolution des Problem Aux Limites Nonlinéaires, (1969)
[2]  
Xiaxi D., Peizhu L., Yanyan L., The Solvability of Nonlinear Parabolic Equation in Ba Space, J. of Central Teachers College (Natural Science Edition), 2, pp. 1-9, (1985)
[3]  
Congming L., Global Properties of the Solutions of Nonlinear Schrödinger Equations on a Bounded Domain, J. Sys. Sci. & Math. Scis., 4, 2, pp. 160-164, (1984)
[4]  
Daqian L., Nonlinear Evolutional Equations, (1989)
[5]  
Jingqi Y., Time Decay of Solutions to a Nonlinear Schrödinger Equation in an Exterior Domain in R<sup>2</sup>, Nonlinear Analysis, 19, pp. 563-571, (1992)
[6]  
Tsutsumi M., On Smooth Solutions to the Initial-boundary Value Problem for the Nonlinear Schrödin -ger Equation in Two Space Dimensions, Nonlinear Analysis, 13, pp. 1051-1056, (1989)
[7]  
Segal L., Nonlinear Semi-groups, Ann. Math., 78, pp. 339-364, (1963)
[8]  
Brezis H., Gallouet T., Nonlinear Schrödinger Evolution Equations, Nonlinear Analysis, 4, pp. 677-681, (1980)
[9]  
Jingqi Y., The Solutions of One Type of Nonlinear Schrödinger Equations, Chinese Annals of Mathematics, 7 A, 4, pp. 413-422, (1986)
[10]  
Temam R., Navier-Stokes Equations, (1985)