The Steiner Tree Problem in Kalmanson Matrices and in Circulant Matrices

被引:0
作者
Bettina Klinz
Gerhard J. Woeginger
机构
[1] Institut für Mathematik,
[2] TU Graz,undefined
来源
Journal of Combinatorial Optimization | 1999年 / 3卷
关键词
Steiner tree; Kalmanson matrix; circulant matrix; computational complexity; graph algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the computational complexity of two special cases of the Steiner tree problem where the distance matrix is a Kalmanson matrix or a circulant matrix, respectively. For Kalmanson matrices we develop an efficient polynomial time algorithm that is based on dynamic programming. For circulant matrices we give an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{N}\mathcal{P}$$ \end{document}-hardness proof and thus establish computational intractability.
引用
收藏
页码:51 / 58
页数:7
相关论文
共 10 条
[1]  
Deineko V.G.(1998)Sometimes travelling is easy: The master tour problem SIAM Journal on Discrete Mathematics 11 81-93
[2]  
Rudolf R.(1997)The computational complexity of Steiner tree problems in graded matrices Applied Mathematics Letters 10 35-39
[3]  
Woeginger G.J.(1977)The complexity of computing Steiner minimal trees SIAM Journal on Applied Mathematics 32 835-859
[4]  
Dud´as T.(1975)Edgeconvex circuits and the travelling salesman problem Canadian Journal of Mathematics 27 1000-1010
[5]  
Klinz B.(undefined)undefined undefined undefined undefined-undefined
[6]  
Woeginger G.J.(undefined)undefined undefined undefined undefined-undefined
[7]  
Garey M.R.(undefined)undefined undefined undefined undefined-undefined
[8]  
Graham R.L.(undefined)undefined undefined undefined undefined-undefined
[9]  
Johnson D.S.(undefined)undefined undefined undefined undefined-undefined
[10]  
Kalmanson K.(undefined)undefined undefined undefined undefined-undefined