Approximate amenability of Banach category algebras with application to semigroup algebras

被引:0
作者
M. Maysami Sadr
A. Pourabbas
机构
[1] Amirkabir University of Technology,Faculty of Mathematics and Computer Science
来源
Semigroup Forum | 2009年 / 79卷
关键词
Approximate amenability; Semigroup algebra; Brandt semigroup; Small category;
D O I
暂无
中图分类号
学科分类号
摘要
Let C be a small category. Then we consider ℓ1(C) as the ℓ1 algebra over the morphisms of C, with convolution product and also consider \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell^{1}(\hat{C})$\end{document} as the ℓ1 algebra over the objects of C, with pointwise multiplication. The main purpose of this paper is to show that approximate amenability of ℓ1(C) implies of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell^{1}(\hat{C})$\end{document} and clearly this implies that C has only finitely many objects. Some applications are given, the main one is the characterization of approximate amenability for ℓ1(S), where S is a Brandt semigroup, which corrects a result of Lashkarizadeh Bami and Samea (Semigroup Forum 71:312–322, 2005).
引用
收藏
页码:55 / 64
页数:9
相关论文
共 50 条
  • [31] Approximate Amenability of Segal Algebras II
    Alaghmandan, Mahmood
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (01): : 3 - 6
  • [32] On pseudo-amenability of commutative semigroup algebras and their second duals
    M. Soroushmehr
    M. Rostami
    M. Essmaili
    Semigroup Forum, 2018, 96 : 348 - 356
  • [33] On pseudo-amenability of commutative semigroup algebras and their second duals
    Soroushmehr, M.
    Rostami, M.
    Essmaili, M.
    SEMIGROUP FORUM, 2018, 96 (02) : 348 - 356
  • [34] Amenability Modulo an Ideal of Second Duals of Semigroup Algebras
    Rahimi, Hamidreza
    Nabizadeh, Khalil
    MATHEMATICS, 2016, 4 (03)
  • [35] MODULE JOHNSON AMENABILITY OF CERTAIN BANACH ALGEBRAS
    Sahami, Amir
    Shariati, Seyedeh Fatemeh
    Pourabbas, Abdolrasoul
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2021, 83 (02): : 165 - 176
  • [36] Approximate identities of l1-Munn algebras and applications to semigroup algebras
    Soroushmehr, Maedeh
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2018, 92 (3-4): : 357 - 372
  • [37] Approximate cohomology in Banach algebras
    Pourabbas, A.
    Shirinkalam, A.
    QUAESTIONES MATHEMATICAE, 2017, 40 (01) : 107 - 118
  • [38] GENERALIZED NOTIONS OF AMENABILITY AND CHARACTER AMENABILITY OF A CERTAIN CLASS OF BANACH ALGEBRAS
    Nahrekhalaji, H. Sadeghi
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2020, 82 (04): : 161 - 170
  • [39] l(1)- MUNN IDEAL AMENABILITY OF CERTAIN SEMIGROUP ALGEBRAS
    Shadab, M.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2013, 19 (02): : 187 - 190
  • [40] Module Amenability of Semigroup Algebras under Certain Module Actions
    Sahleh, A.
    Tanha, S. Grailo
    JOURNAL OF MATHEMATICAL EXTENSION, 2014, 8 (02) : 59 - 69