Entanglement of purification and disentanglement in CFTs

被引:0
作者
Wu-zhong Guo
机构
[1] National Tsing-Hua University,Physics Division, National Center for Theoretical Sciences
来源
Journal of High Energy Physics | / 2019卷
关键词
Conformal Field Theory; AdS-CFT Correspondence;
D O I
暂无
中图分类号
学科分类号
摘要
We study the entanglement of purification (EoP) of subsystem A and B in conformal field theories (CFTs) stressing on its relation to unitary operations of disentanglement, if the auxiliary subsystem A˜\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tilde{A} $$\end{document} adjoins A and A˜B˜\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tilde{A}\tilde{B} $$\end{document} is the complement of AB. We estimate the amount of the disentanglement by using the inequality of Von Neumann entropy as well as the surface/state correspondence. Denote the state that produces the EoP by |ψ〉M. We calculate the variance of entanglement entropy of AA˜\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tilde{A} $$\end{document} in the state ψδ≔eiδHA˜B˜ψM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left|\psi \left(\delta \right)\right\rangle := {e}^{i\delta H}\tilde{A}\tilde{B}{\left|\psi \right\rangle}_M $$\end{document}. We find a constraint on the state ψMKAA˜,MOA˜=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left|\psi \right\rangle}_M\left[{K}_{A\tilde{A},M},{O}_{\tilde{A}}\right]=0 $$\end{document}, where KAA˜,M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {K}_{A\tilde{A},M} $$\end{document} is the modular Hamiltonian of AA˜\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tilde{A} $$\end{document} in the state |ψ〉M, OA˜∈ℛA˜\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {O}_{\tilde{A}}\in \mathcal{R}\left(\tilde{\mathrm{A}}\right) $$\end{document} is an arbitrary operator. We also study three different states that can be seen as disentangled states. Two of them can produce the holographic EoP result in some limit. But we show that none of they could be a candidate of the state |ψ〉M, since the distance between these three states and |ψ〉M is very large.
引用
收藏
相关论文
共 84 条
[1]  
Srednicki M(1993)Surface/state correspondence as a generalized holography Phys. Rev. Lett. 71 666-4298
[2]  
Maldacena JM(1999)The entanglement of purification Int. J. Theor. Phys. 38 1113-undefined
[3]  
Ryu S(2006)The gravity dual of a density matrix Phys. Rev. Lett. 96 181602-undefined
[4]  
Takayanagi T(2006) — JHEP 08 045-undefined
[5]  
Ryu S(2015)undefined Progress of Theoretical and Experimental Physics 2015 073B03-undefined
[6]  
Takayanagi T(2002)undefined Journal of Mathematical Physics 43 4286-undefined
[7]  
Miyaji Masamichi(2018)undefined JHEP 04 132-undefined
[8]  
Takayanagi Tadashi(2019)undefined Phys. Rev. Lett. 122 201601-undefined
[9]  
Terhal Barbara M.(2018)undefined Nature Phys. 14 573-undefined
[10]  
Horodecki Michał(2018)undefined JHEP 01 098-undefined