Quantization as a categorical equivalence

被引:0
作者
Benjamin H. Feintzeig
机构
[1] University of Washington,Department of Philosophy
来源
Letters in Mathematical Physics | / 114卷
关键词
Strict deformation quantization; C; -algebras; Weyl algebra; Rieffel quantization; Categorical equivalence; 46L65; 81P05; 81R15;
D O I
暂无
中图分类号
学科分类号
摘要
We demonstrate that, in certain cases, quantization and the classical limit provide functors that are “almost inverse” to each other. These functors map between categories of algebraic structures for classical and quantum physics, establishing a categorical equivalence.
引用
收藏
相关论文
共 34 条
[1]  
Binz E(2004)Construction and uniqueness of the C*-Weyl algebra over a general pre-symplectic space J. Math. Phys. 45 2885-2907
[2]  
Honegger R(2004)Field-theoretic Weyl Quantization as a Strict and Continuous Deformation Quantization Annales de l’Institut Henri Poincaré 5 327-346
[3]  
Rieckers A(2018)The classical limit of a state on the Weyl algebra J. Math. Phys. 59 112102-639
[4]  
Binz E(2020)The classical limit as an approximation Philos. Sci. 87 612-132
[5]  
Honegger R(2019)Why be regular? Part I Stud. Hist. Philos. Mod. Phys. 65 122-144
[6]  
Rieckers A(2019)Why be regular? Part II Stud. Hist. Philos. Mod. Phys. 65 133-145
[7]  
Feintzeig B(1997)A group algebra for inductive limit groups. continuity problems of the canonical commutation relations Acta Appl. Math. 46 107-613
[8]  
Feintzeig B(2009)Full regularity for a C*-algebra of the Canonical Commutation Relations Rev. Math. Phys. 21 587-084
[9]  
Feintzeig B(2008)Field-theoretic Weyl deformation quantization of enlarged Poisson algebras Symmetry Integr. Geometry Methods Appl. 4 047-697
[10]  
Manchak J(1995)Operations on continuous bundles of C*-algebras Math. Ann. 303 677-806