Effects of carbon dioxide hydration kinetics and evaporative convection on pH profile development during interfacial mass transfer of ammonia and carbon dioxide

被引:0
作者
Sasha D. Hafner
Sven G. Sommer
Valdemar Petersen
Rikke Markfoged
机构
[1] University of Southern Denmark,Department of Chemical Engineering, Biotechnology, and Environmental Technology
[2] Aarhus University,Microbiology Lab, Department of Biological Sciences, Faculty of Science and Technology
来源
Heat and Mass Transfer | 2017年 / 53卷
关键词
Carbonic Anhydrase; Mass Transfer Coefficient; Mass Transfer Rate; High Relative Humidity; Carbonic Anhydrase Activity;
D O I
暂无
中图分类号
学科分类号
摘要
Interfacial mass transfer of NH3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NH}_3$$\end{document} and CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document} are important in processes as diverse as NH3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NH}_3$$\end{document} emission from animal manure and gas scrubbing for removal of carbon dioxide. Predicting transfer rates is complicated by bidirectional interactions between solution pH and emission rates, which may be affected by physical, chemical, and biological processes. We studied the effects of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document} hydration kinetics and evaporative convection on the development of pH profiles in solutions undergoing simultaneous emission of NH3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NH}_3$$\end{document} and CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document}. Profiles of pH were measured at a 0.1 mm resolution over 15 h, and interpreted using a reaction-transport model. Under high humidity, surface pH increased quickly (>0.2 units in 8 min) and an increase gradually extended to deeper depths. An increase in CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document} hydration and carbonic acid dehydration rates by addition of carbonic anhydrase increased the elevation of surface pH and the depth to which an increase extended, due to an increase in CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document} emission. Results show that unless carbonic anhydrase is present, the equilibrium approach typically used for modeling interfacial transport of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document} and NH3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NH}_3$$\end{document} will be inaccurate. Evaporation and resulting convection greatly increased mass transfer rates below an apparent surface film about 1 mm thick. Emission or absorption of CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document} can produce steep gradients in pH over small distances (<0.5 to >20 mm) in systems with and without convective mixing, and the resulting surface pH, in turn, strongly affects NH3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NH}_3$$\end{document} transfer. Both convection and the rate of hydration/dehydration reactions are likely to affect pH profile development and rates of NH3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NH}_3$$\end{document} and CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document} transfer in many systems. Accurately predicting mass transfer rates for these systems will require an understanding of these processes in the systems.
引用
收藏
页码:1335 / 1342
页数:7
相关论文
共 40 条
  • [1] Denmead O(1992)Transfer coefficients for water-air exchange of ammonia, carbon dioxide and methane Ecol Bull 42 31-41
  • [2] Freney J(1992)Simultaneous transfer across an air–water interface of gases that interact through acid–base reactions Atmos Environ A Gen Top 26 1651-289
  • [3] Kirk G(2013)Evaluation of pH, alkalinity and temperature during air stripping process for ammonia removal from landfill leachate J Environ Sci Health A Toxic Hazard Substan Environ Eng 48 1105-undefined
  • [4] Rachhpal-Singh JC(2011)Ammonia-based carbon dioxide capture technology: issues and solutions Energy Procedia 4 1459-undefined
  • [5] Campos D(2013)The role of carbon dioxide in emission of ammonia from manure Atmos Environ 66 63-undefined
  • [6] Moura AP(1960)The hydration of carbon dioxide J Chem Educ 37 14-undefined
  • [7] Costa L(2014)Prokaryotic carbonic anhydrases of Earth’s environment. Sub-Cell Biochem 75 77-undefined
  • [8] Yokoyama FV(2001)Naturally low carbonic anhydrase activity in C4 and C3 plants limits discrimination against C18OO during photosynthesis Plant Cell Environ 24 141-undefined
  • [9] da Fonseca Araujo MC(2000)The distribution and physiological significance of carbonic anhydrase in vertebrate gas exchange organs Respir Physiol 121 1-undefined
  • [10] Cammarota L(1999)Use of simultaneous IR temperature measurements and DPIV to investigate thermal plumes in a thick layer cooled from above Exp Fluids 27 70-undefined