On the existence and non-existence of some classes of bent–negabent functions

被引:0
作者
Bimal Mandal
Subhamoy Maitra
Pantelimon Stănică
机构
[1] INRIA,CARAMBA
[2] Indian Statistical Institute,Applied Statistics Unit
[3] Naval Postgraduate School,Department of Applied Mathematics
来源
Applicable Algebra in Engineering, Communication and Computing | 2022年 / 33卷
关键词
Boolean functions; Bent–negabent functions; Bent functions; Rotation symmetric functions;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate different questions related to bent–negabent functions. We first take an expository look at the state-of-the-art research in this domain and point out some technical flaws in certain results and fix some of them. Further, we derive a necessary and sufficient condition for which the functions of the form x·π(y)⊕h(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{x}}\cdot \pi ({\mathbf{y}})\oplus h({\mathbf{y}})$$\end{document} [Maiorana–McFarland (M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document})] is bent–negabent, and more generally, we study the non-existence of bent–negabent functions in the M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document} class. We also identify some functions that are bent–negabent. Next, we continue the recent work by Mandal et al. (Discrete Appl Math 236:1–6, 2018) on rotation symmetric bent–negabent functions and show their non-existence in larger classes. For example, we prove that there is no rotation symmetric bent–negabent function in 4pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4p^k$$\end{document} variables, where p is an odd prime. We present the non-existence of such functions in certain classes that are affine transformations of rotation symmetric functions. Keeping in mind the existing literature, we correct here some technical issues and errors found in other papers and provide some novel results.
引用
收藏
页码:237 / 260
页数:23
相关论文
共 43 条
  • [1] Canteaut A(2003)Decomposing bent functions IEEE Trans. Inf. Theory 49 2004-2019
  • [2] Charpin P(2004)On the secondary constructions of resilient and bent functions Coding Cryptogr. Comb. 23 3-28
  • [3] Carlet C(2016)Four decades of research on bent functions Des. Codes Cryptogr. 78 5-50
  • [4] Carlet C(2009)Results on rotation symmetric bent functions Disc Math. 309 2398-2409
  • [5] Mesnager S(2007)Search for Boolean functions with excellent profiles in the rotation symmetric class IEEE Trans. Inf. Theory 53 1743-1751
  • [6] Dalai DK(1973)A family of noncyclic difference sets J. Comb. Theory Ser. A 15 1-10
  • [7] Maitra S(2018)On non-existence of bent–negabent rotation symmetric Boolean functions Discrete Appl. Math. 236 1-6
  • [8] Sarkar S(2014)Several new infinite families of bent functions and their duals IEEE Trans. Inf. Theory 60 4397-4407
  • [9] Kavut S(1999)Fast hashing and rotation-symmetric functions J. Univ. Comput. Sci. 5 20-31
  • [10] Maitra S(1976)On bent functions J. Comb. Theory Ser. A 20 300-305