Homoclinic solutions for a second-order singular differential equation

被引:0
作者
Shiping Lu
Xuewen Jia
机构
[1] Nanjing University of Information Science and Technology,College of Mathematics and Statistics
来源
Journal of Fixed Point Theory and Applications | 2018年 / 20卷
关键词
Liénard equation; homoclinic solution; periodic solution; singularity; 34C25; 34B16; 34B18;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the problem of existence of homoclinic solutions is studied for the second-order singular differential equation x′′(t)+f(x(t))x′(t)-g(x(t))-α(t)x(t)1-x(t)=h(t),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} x''(t)+f(x(t))x'(t)-g(x(t))-\frac{\alpha (t)x(t)}{1-x(t)}=h(t), \end{aligned}$$\end{document}where f,g,h,α:R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f,g,h,\alpha : R\rightarrow R$$\end{document} are continuous and α(t+T)≡α(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (t+T)\equiv \alpha (t)$$\end{document} for all t∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in R$$\end{document}. Using the continuation theorem of coincidence degree theory given by Mawhin and Manásevich, a new result on the existence of homoclinic solutions to the equation is obtained.
引用
收藏
相关论文
共 39 条
  • [1] Faure R(1976)Sur l’application d’un théorème de point fixe à l’existence de solutions périodiques C. R. Acad. Sci. Paris 282 A 1295-1298
  • [2] Lazer AC(1987)On periodic solutions of nonlinear differential equations with singularities J. Proc. Am. Math. Soc. 99 109-114
  • [3] Solimini S(2003)Existence of one-signed periodic solutions of some second order differential equations via a Krasnoselskii fixed point theorem J. Differ. Equ. 190 643-662
  • [4] Torres PJ(2006)Existence of periodic solutions for second-order differential equations with singularities and the strong force condition J. Math. Anal. Appl. 317 1-13
  • [5] Martins R(2002)Periodic solutions of singular nonlinear perturbations of the ordinary p-Laplacian J. Adv. Nonlinear Stud. 2 299-312
  • [6] Jebelean P(2016)Twist periodic solutions for differential equations with a combined attractive-repulsive singularity J. Math. Anal. Appl. 437 1070-1083
  • [7] Mawhin J(2008)Periodic solutions for second order differential equations with a singular nonlinearity Nonlinear Anal. 69 3866-3876
  • [8] Chu J(2010)On periodic solutions of second-order differential equations with attractive Crepulsive singularities J. Differ. Equ. 248 111-126
  • [9] Torres PJ(2011)Periodic solutions of singular second order differential equations: upper and lower functions Nonlinear Anal. 74 7078-7093
  • [10] Wang F(2014)Periodic solutions of Liénard equations with a singularity and a deviating argument Nonlinear Anal. Real World Appl. 16 227-234