Enhancing diagnostic deep learning via self-supervised pretraining on large-scale, unlabeled non-medical images

被引:0
|
作者
Soroosh Tayebi Arasteh
Leo Misera
Jakob Nikolas Kather
Daniel Truhn
Sven Nebelung
机构
[1] University Hospital RWTH Aachen,Department of Diagnostic and Interventional Radiology
[2] Faculty of Medicine and University Hospital Carl Gustav Carus Dresden,Institute and Polyclinic for Diagnostic and Interventional Radiology
[3] Technische Universität Dresden,Else Kröner Fresenius Center for Digital Health
[4] Technische Universität Dresden,Department of Medicine III
[5] University Hospital RWTH Aachen,Medical Oncology, National Center for Tumor Diseases (NCT)
[6] University Hospital Heidelberg,undefined
来源
European Radiology Experimental | / 8卷
关键词
Artificial intelligence; Deep learning; Medical image processing; Radiography (thoracic); Unsupervised machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
• Validated on over 800,000 chest radiographs from 6 datasets and 20 imaging findings, a self-supervised pretraining on non-medical images outperformed ImageNet-based supervised pretraining.
引用
收藏
相关论文
共 50 条
  • [1] Enhancing diagnostic deep learning via self-supervised pretraining on large-scale, unlabeled non-medical images
    Arasteh, Soroosh Tayebi
    Misera, Leo
    Kather, Jakob Nikolas
    Truhn, Daniel
    Nebelung, Sven
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2024, 8 (01)
  • [2] Prediction of freezing of gait based on self-supervised pretraining via contrastive learning
    Xia, Yi
    Sun, Hua
    Zhang, Baifu
    Xu, Yangyang
    Ye, Qiang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 89
  • [3] Large-Scale Self-Supervised Human Activity Recognition
    Zadeh, Mohammad Zaki
    Jaiswal, Ashish
    Pavel, Hamza Reza
    Hebri, Aref
    Kapoor, Rithik
    Makedon, Fillia
    PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS, PETRA 2022, 2022, : 298 - 299
  • [4] Self-supervised denoising of Nyquist-sampled volumetric images via deep learning
    Applegate, Matthew B.
    Kose, Kivanc
    Ghimire, Sandesh
    Rajadhyaksha, Milind
    Dy, Jennifer
    JOURNAL OF MEDICAL IMAGING, 2023, 10 (02)
  • [5] A Review of Predictive and Contrastive Self-supervised Learning for Medical Images
    Wang, Wei-Chien
    Ahn, Euijoon
    Feng, Dagan
    Kim, Jinman
    MACHINE INTELLIGENCE RESEARCH, 2023, 20 (04) : 483 - 513
  • [6] A Review of Predictive and Contrastive Self-supervised Learning for Medical Images
    Wei-Chien Wang
    Euijoon Ahn
    Dagan Feng
    Jinman Kim
    Machine Intelligence Research, 2023, 20 : 483 - 513
  • [7] Joint Image-Text Hashing for Fast Large-Scale Cross-Media Retrieval Using Self-Supervised Deep Learning
    Wu, Gengshen
    Han, Jungong
    Lin, Zijia
    Ding, Guiguang
    Zhang, Baochang
    Ni, Qiang
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (12) : 9868 - 9877
  • [8] Self-Supervised Blind Image Deconvolution via Deep Generative Ensemble Learning
    Chen, Mingqin
    Quan, Yuhui
    Xu, Yong
    Ji, Hui
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (02) : 634 - 647
  • [9] Self-supervised deep-learning segmentation of corneal endothelium specular microscopy images
    Sanchez, Sergio
    Mendoza, Kevin
    Quintero, Fernando J.
    Prada, Angelica M.
    Tello, Alejandro
    Galvis, Virgilio
    Romero, Lenny A.
    Marrugo, Andres G.
    2023 IEEE COLOMBIAN CONFERENCE ON APPLICATIONS OF COMPUTATIONAL INTELLIGENCE, COLCACI, 2023,
  • [10] Clutter Removal for Microwave Head Imaging via Self-Supervised Deep Learning Techniques
    Lai, Wei-chung
    Guo, Lei
    Bialkowski, Konstanty
    Abbosh, Amin
    Bialkowski, Alina
    IEEE JOURNAL OF ELECTROMAGNETICS RF AND MICROWAVES IN MEDICINE AND BIOLOGY, 2024, 8 (04): : 384 - 392