Representation stability of the cohomology of Springer varieties and some combinatorial consequences

被引:0
作者
Aba Mbirika
Julianna Tymoczko
机构
[1] University of Wisconsin-Eau Claire,Department of Mathematics
[2] Smith College,Department of Mathematics and Statistics
来源
Journal of Algebraic Combinatorics | 2021年 / 53卷
关键词
Representation stability; Springer varieties; Combinatorics;
D O I
暂无
中图分类号
学科分类号
摘要
A sequence of Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document}-representations {Vn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{V_n\}$$\end{document} is said to be uniformly representation stable if the decomposition of Vn=⨁μcμ,nV(μ)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_n = \bigoplus _{\mu } c_{\mu ,n} V(\mu )_n$$\end{document} into irreducible representations is independent of n for each μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}—that is, the multiplicities cμ,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{\mu ,n}$$\end{document} are eventually independent of n for each μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}. Church–Ellenberg–Farb proved that the cohomology of flag varieties (the so-called diagonal coinvariant algebra) is uniformly representation stable. We generalize their result from flag varieties to all Springer fibers. More precisely, we show that for any increasing subsequence of Young diagrams, the corresponding sequence of Springer representations form a graded co-FI-module of finite type (in the sense of Church–Ellenberg–Farb). We also explore some combinatorial consequences of this stability.
引用
收藏
页码:897 / 920
页数:23
相关论文
共 32 条
  • [1] Bibby C(2018)Representation stability for the cohomology of arrangements associated to root systems J. Algebraic Combin. 48 51-75
  • [2] Borel A(1953)Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts Ann. Math. 2 115-207
  • [3] Borho W(1983)Partial resolutions of nilpotent varieties Astérisque 101–102 23-74
  • [4] MacPherson R(2015)FI-modules and stability for representations of symmetric groups Duke Math. J. 164 1833-1910
  • [5] Church T(2014)FI-modules over Noetherian rings Geom. Topol. 18 2951-2984
  • [6] Ellenberg JS(2013)Representation theory and homological stability Adv. Math. 245 250-314
  • [7] Farb B(1981)Symmetric functions, conjugacy classes and the flag variety Invent. Math. 64 203-219
  • [8] Church T(1997)Quantum Schubert polynomials J. Am. Math. Soc. 10 565-596
  • [9] Ellenberg JS(2009)Betti numbers of Springer fibers in type A J. Algebra 322 2566-2579
  • [10] Farb B(2017)Representation stability for families of linear subspace arrangements Adv. Math. 322 341-377