A new adaptive multi-fidelity metamodel method using meta-learning and Bayesian deep learning
被引:0
|
作者:
Fenfen Xiong
论文数: 0引用数: 0
h-index: 0
机构:Beijing Institute of Technology,School of Aerospace Engineering
Fenfen Xiong
Chengkun Ren
论文数: 0引用数: 0
h-index: 0
机构:Beijing Institute of Technology,School of Aerospace Engineering
Chengkun Ren
Bo Mo
论文数: 0引用数: 0
h-index: 0
机构:Beijing Institute of Technology,School of Aerospace Engineering
Bo Mo
Chao Li
论文数: 0引用数: 0
h-index: 0
机构:Beijing Institute of Technology,School of Aerospace Engineering
Chao Li
Xiao Hu
论文数: 0引用数: 0
h-index: 0
机构:Beijing Institute of Technology,School of Aerospace Engineering
Xiao Hu
机构:
[1] Beijing Institute of Technology,School of Aerospace Engineering
[2] Southwest Technology and Engineering Research Institute,Department of Mechanical
[3] Imperial College London,undefined
来源:
Structural and Multidisciplinary Optimization
|
2023年
/
66卷
关键词:
Multi-fidelity modeling;
Meta-learning;
Bayesian deep learning;
Sequential sampling;
Cost-effectiveness;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
To reduce the computational cost, multi-fidelity (MF) metamodel methods have been widely used in engineering optimization. Most of these methods are based on the standard Gaussian random process theory; thus, the time cost required for hyperparameter estimation increases significantly with an increase in the dimension and nonlinearity of the problems especially for high-dimensional problems. To address these issues, by exploiting the great potential of deep neural networks in high-dimensional information extraction and approximation, a meta-learning-based multi-fidelity Bayesian neural network (ML-MFBNN) method is developed in this study. Based on this, to further reduce the computational cost, an adaptive multi-fidelity sampling strategy is proposed in combination with Bayesian deep learning to sequentially select the highly cost-effective samples. The effectiveness and advantages of the proposed MF-MFBNN and adaptive multi-fidelity sampling strategy are verified through eight mathematical examples, and the application to model validation of computational fluid dynamics and robust shape optimization of the ONERA M6 wing.
机构:
Univ Fed Rio Grande do Norte, Dept Informat & Appl Math, BR-59078970 Natal, RN, BrazilUniv Fed Rio Grande do Norte, Dept Informat & Appl Math, BR-59078970 Natal, RN, Brazil
Da Silva, Robercy Alves
Canuto, Anne Magaly De Paula
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Norte, Dept Informat & Appl Math, BR-59078970 Natal, RN, BrazilUniv Fed Rio Grande do Norte, Dept Informat & Appl Math, BR-59078970 Natal, RN, Brazil
Canuto, Anne Magaly De Paula
Barreto, Cephas Alves Da Silveira
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Norte, Dept Informat & Appl Math, BR-59078970 Natal, RN, BrazilUniv Fed Rio Grande do Norte, Dept Informat & Appl Math, BR-59078970 Natal, RN, Brazil
Barreto, Cephas Alves Da Silveira
Xavier-Junior, Joao Carlos
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Norte, Digital Metropolis Inst, BR-59078970 Natal, RN, BrazilUniv Fed Rio Grande do Norte, Dept Informat & Appl Math, BR-59078970 Natal, RN, Brazil
机构:
Shenzhen Univ, Coll Management, Shenzhen, Peoples R China
Shenzhen Univ, Inst Big Data Intelligent Management & Decis, Shenzhen, Peoples R ChinaShenzhen Univ, Coll Management, Shenzhen, Peoples R China
Chu, Xianghua
Cai, Fulin
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Management, Shenzhen, Peoples R ChinaShenzhen Univ, Coll Management, Shenzhen, Peoples R China
Cai, Fulin
Cui, Can
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Sch Comp, Informat, Decis Syst Engn, Tempe, AZ 85287 USAShenzhen Univ, Coll Management, Shenzhen, Peoples R China
Cui, Can
Hu, Mengqi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Mech & Ind Engn, Chicago, IL USAShenzhen Univ, Coll Management, Shenzhen, Peoples R China
Hu, Mengqi
Li, Li
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Management, Shenzhen, Peoples R ChinaShenzhen Univ, Coll Management, Shenzhen, Peoples R China
Li, Li
Qin, Quande
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Management, Shenzhen, Peoples R ChinaShenzhen Univ, Coll Management, Shenzhen, Peoples R China
机构:
Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510275, Peoples R ChinaSun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510275, Peoples R China
Sun, Ya
Mai, Sijie
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510275, Peoples R ChinaSun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510275, Peoples R China
Mai, Sijie
Hu, Haifeng
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510275, Peoples R ChinaSun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510275, Peoples R China