A new adaptive multi-fidelity metamodel method using meta-learning and Bayesian deep learning

被引:0
|
作者
Fenfen Xiong
Chengkun Ren
Bo Mo
Chao Li
Xiao Hu
机构
[1] Beijing Institute of Technology,School of Aerospace Engineering
[2] Southwest Technology and Engineering Research Institute,Department of Mechanical
[3] Imperial College London,undefined
来源
Structural and Multidisciplinary Optimization | 2023年 / 66卷
关键词
Multi-fidelity modeling; Meta-learning; Bayesian deep learning; Sequential sampling; Cost-effectiveness;
D O I
暂无
中图分类号
学科分类号
摘要
To reduce the computational cost, multi-fidelity (MF) metamodel methods have been widely used in engineering optimization. Most of these methods are based on the standard Gaussian random process theory; thus, the time cost required for hyperparameter estimation increases significantly with an increase in the dimension and nonlinearity of the problems especially for high-dimensional problems. To address these issues, by exploiting the great potential of deep neural networks in high-dimensional information extraction and approximation, a meta-learning-based multi-fidelity Bayesian neural network (ML-MFBNN) method is developed in this study. Based on this, to further reduce the computational cost, an adaptive multi-fidelity sampling strategy is proposed in combination with Bayesian deep learning to sequentially select the highly cost-effective samples. The effectiveness and advantages of the proposed MF-MFBNN and adaptive multi-fidelity sampling strategy are verified through eight mathematical examples, and the application to model validation of computational fluid dynamics and robust shape optimization of the ONERA M6 wing.
引用
收藏
相关论文
共 50 条
  • [21] Meta-learning approaches for learning-to-learn in deep learning: A survey
    Tian, Yingjie
    Zhao, Xiaoxi
    Huang, Wei
    NEUROCOMPUTING, 2022, 494 : 203 - 223
  • [22] Adaptive Uncertainty Quantification for Scenario-based Control Using Meta-learning of Bayesian Neural Networks
    Bao, Yajie
    Velni, Javad Mohammadpour
    IFAC PAPERSONLINE, 2024, 58 (28): : 486 - 491
  • [23] Deepfake detection using deep feature stacking and meta-learning
    Naskar, Gourab
    Mohiuddin, Sk
    Malakar, Samir
    Cuevas, Erik
    Sarkar, Ram
    HELIYON, 2024, 10 (04)
  • [24] Multi-objective meta-learning
    Ye, Feiyang
    Lin, Baijiong
    Yue, Zhixiong
    Zhang, Yu
    Tsang, Ivor W.
    ARTIFICIAL INTELLIGENCE, 2024, 335
  • [25] Meta-AF: Meta-Learning for Adaptive Filters
    Casebeer, Jonah
    Bryan, Nicholas J.
    Smaragdis, Paris
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2023, 31 : 355 - 370
  • [26] Online Optimization Method of Learning Process for Meta-Learning
    Xu, Zhixiong
    Zhang, Wei
    Li, Ailin
    Zhao, Feifei
    Jing, Yuanyuan
    Wan, Zheng
    Cao, Lei
    Chen, Xiliang
    COMPUTER JOURNAL, 2023, 67 (05) : 1645 - 1651
  • [27] A malicious traffic detection method based on Bayesian meta-learning for few samples
    Liu, Zhibin
    Lv, Zhanpeng
    Zhao, Lixin
    Li, Min
    Liu, Xin
    INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS, 2023, 16 (03) : 235 - 244
  • [28] Learn to chill - Intelligent Chiller Scheduling using Meta-learning and Deep Reinforcement Learning
    Manoharan, Praveen
    Venkat, Malini Pooni
    Nagarathinam, Srinarayana
    Vasan, Arunchandar
    BUILDSYS'21: PROCEEDINGS OF THE 2021 ACM INTERNATIONAL CONFERENCE ON SYSTEMS FOR ENERGY-EFFICIENT BUILT ENVIRONMENTS, 2021, : 21 - 30
  • [29] Context Adaptive Metric Model for Meta-learning
    Wang, Zhe
    Li, Fanzhang
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT I, 2020, 12396 : 393 - 405
  • [30] Visual Tracking by Adaptive Continual Meta-Learning
    Choi, Janghoon
    Baik, Sungyong
    Choi, Myungsub
    Kwon, Junseok
    Lee, Kyoung Mu
    IEEE ACCESS, 2022, 10 : 9022 - 9035