A new adaptive multi-fidelity metamodel method using meta-learning and Bayesian deep learning

被引:0
|
作者
Fenfen Xiong
Chengkun Ren
Bo Mo
Chao Li
Xiao Hu
机构
[1] Beijing Institute of Technology,School of Aerospace Engineering
[2] Southwest Technology and Engineering Research Institute,Department of Mechanical
[3] Imperial College London,undefined
来源
Structural and Multidisciplinary Optimization | 2023年 / 66卷
关键词
Multi-fidelity modeling; Meta-learning; Bayesian deep learning; Sequential sampling; Cost-effectiveness;
D O I
暂无
中图分类号
学科分类号
摘要
To reduce the computational cost, multi-fidelity (MF) metamodel methods have been widely used in engineering optimization. Most of these methods are based on the standard Gaussian random process theory; thus, the time cost required for hyperparameter estimation increases significantly with an increase in the dimension and nonlinearity of the problems especially for high-dimensional problems. To address these issues, by exploiting the great potential of deep neural networks in high-dimensional information extraction and approximation, a meta-learning-based multi-fidelity Bayesian neural network (ML-MFBNN) method is developed in this study. Based on this, to further reduce the computational cost, an adaptive multi-fidelity sampling strategy is proposed in combination with Bayesian deep learning to sequentially select the highly cost-effective samples. The effectiveness and advantages of the proposed MF-MFBNN and adaptive multi-fidelity sampling strategy are verified through eight mathematical examples, and the application to model validation of computational fluid dynamics and robust shape optimization of the ONERA M6 wing.
引用
收藏
相关论文
共 50 条
  • [1] A new adaptive multi-fidelity metamodel method using meta-learning and Bayesian deep learning
    Xiong, Fenfen
    Ren, Chengkun
    Mo, Bo
    Li, Chao
    Hu, Xiao
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2023, 66 (03)
  • [2] Meta-Learning Based Multi-Fidelity Deep Neural Networks Metamodel Method
    Zhang L.
    Chen J.
    Xiong F.
    Ren C.
    Li C.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2022, 58 (01): : 190 - 200
  • [3] MULTI-FIDELITY GENERATIVE DEEP LEARNING TURBULENT FLOWS
    Geneva, Nicholas
    Zabaras, Nicholas
    FOUNDATIONS OF DATA SCIENCE, 2020, 2 (04): : 391 - 428
  • [4] Deep Reinforcement Learning for Robotic Control with Multi-Fidelity Models
    Leguizamo, David Felipe
    Yang, Hsin-Jung
    Lee, Xian Yeow
    Sarkar, Soumik
    IFAC PAPERSONLINE, 2022, 55 (37): : 193 - 198
  • [5] MFNets: MULTI-FIDELITY DATA-DRIVEN NETWORKS FOR BAYESIAN LEARNING AND PREDICTION
    Gorodetsky, Alex A.
    Jakeman, John D.
    Geraci, Gianluca
    Eldred, Michael S.
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2020, 10 (06) : 595 - 622
  • [6] A survey of deep meta-learning
    Mike Huisman
    Jan N. van Rijn
    Aske Plaat
    Artificial Intelligence Review, 2021, 54 : 4483 - 4541
  • [7] A survey of deep meta-learning
    Huisman, Mike
    van Rijn, Jan N.
    Plaat, Aske
    ARTIFICIAL INTELLIGENCE REVIEW, 2021, 54 (06) : 4483 - 4541
  • [8] An active learning multi-fidelity metamodeling method based on the bootstrap estimator
    Wu, Yuda
    Hu, Jiexiang
    Zhou, Qi
    Wang, Shengyi
    Jin, Peng
    AEROSPACE SCIENCE AND TECHNOLOGY, 2020, 106
  • [9] Adaptive Multi-Teacher Knowledge Distillation with Meta-Learning
    Zhang, Hailin
    Chen, Defang
    Wang, Can
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1943 - 1948
  • [10] Meta-learning for Adaptive Image Segmentation
    Sellaouti, Aymen
    Jaafra, Yasmina
    Hamouda, Atef
    IMAGE ANALYSIS AND RECOGNITION, ICIAR 2014, PT I, 2014, 8814 : 187 - 197