Prognostic models for amyotrophic lateral sclerosis: a systematic review

被引:0
作者
Lu Xu
Bingjie He
Yunjing Zhang
Lu Chen
Dongsheng Fan
Siyan Zhan
Shengfeng Wang
机构
[1] Peking University,Department of Epidemiology and Biostatistics, School of Public Health
[2] Peking University Third Hospital,Department of Neurology
[3] Peking University Third Hospital,Research Center of Clinical Epidemiology
[4] Peking University,Center for Intelligent Public Health, Institute for Artificial Intelligence
来源
Journal of Neurology | 2021年 / 268卷
关键词
Neurodegenerative diseases; Motor neuron disease; Amyotrophic lateral sclerosis; Prognostic model; Systematic review;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:3361 / 3370
页数:9
相关论文
共 651 条
[1]  
Brown RH(2017)Amyotrophic lateral sclerosis N Engl J Med 377 162-172
[2]  
Al-Chalabi A(2017)Amyotrophic lateral sclerosis Nat Rev Dis Primers 3 17071-1097
[3]  
Hardiman O(2018)Global, regional, and national burden of motor neuron diseases 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016 Lancet Neurol 17 1083-1454
[4]  
Al-Chalabi A(2015)Predicting prognosis in amyotrophic lateral sclerosis: a simple algorithm J Neurol 262 1447-1367
[5]  
Chio A(2016)A clinical tool for predicting survival in ALS J Neurol Neurosurg Psychiatry 87 1361-144
[6]  
Corr EM(2014)Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist PLoS Med 11 e1001744-63
[7]  
Logroscino G(2019)A dynamic bayesian network model for the simulation of amyotrophic lateral sclerosis progression BMC Bioinformatics 20 118-W33
[8]  
Robberecht W(2015)Prognostic models based on patient snapshots and time windows: predicting disease progression to assisted ventilation in Amyotrophic Lateral Sclerosis J Biomed Inform 58 133-138
[9]  
Shaw PJ(2019)Prognostic models for outcome prediction in patients with chronic obstructive pulmonary disease: systematic review and critical appraisal BMJ 367 l5358-58
[10]  
Simmons Z(2020)Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies BMJ 368 m689-841