共 111 条
[1]
Agarwal PK(2018)Computing the Gromov-Hausdorff distance for metric trees ACM Trans. Algorithms 14 24-767
[2]
Fox K(2001)Geometry of the space of phylogenetic trees Adv. Appl. Math. 27 733-45
[3]
Nath A(2015)Sliced and Radon Wasserstein barycenters of measures J. Math. Imaging Vision 51 22-24
[4]
Sidiropoulos A(2012)Invariant histograms Am. Math. Mon. 119 4-183
[5]
Wang Y(2009)Partial similarity of objects, or how to compare a centaur to a horse Int. J. Comput. Vis. 84 163-1836
[6]
Billera LJ(2006)Efficient computation of isometry-invariant distances between surfaces SIAM J. Sci. Comput. 28 1812-1172
[7]
Holmes SP(2006)Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching Proc. Natl. Acad. Sci. USA 103 1168-301
[8]
Vogtmann K(2009)Topology-invariant similarity of nonrigid shapes Int. J. Comput. Vis. 81 281-286
[9]
Bonneel N(2010)A Gromov–Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching Int. J. Comput. Vis. 89 266-377
[10]
Rabin J(2016)Fast and accurate non-sequential protein structure alignment using a new asymmetric linear sum assignment heuristic Bioinformatics 32 370-1470