The Ultrametric Gromov–Wasserstein Distance

被引:0
作者
Facundo Mémoli
Axel Munk
Zhengchao Wan
Christoph Weitkamp
机构
[1] The Ohio State University,Department of Mathematics
[2] University of Göttingen,Institute for Mathematical Stochastics
[3] University of California San Diego,Halıcıoğlu Data Science Institute
来源
Discrete & Computational Geometry | 2023年 / 70卷
关键词
Ultrametric space; Gromov–Hausdorff distance; Gromov–Wasserstein distance; Optimal transport; Primary: 51F99; Second: 49Q22; 53C23; 53Z50;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate compact ultrametric measure spaces which form a subset Uw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U}^{\textrm{w}}$$\end{document} of the collection of all metric measure spaces Mw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}^{\textrm{w}}$$\end{document}. In analogy with the notion of the ultrametric Gromov–Hausdorff distance on the collection of ultrametric spaces U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U}$$\end{document}, we define ultrametric versions of two metrics on Uw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U}^{\textrm{w}}$$\end{document}, namely of Sturm’s Gromov–Wasserstein distance of order p and of the Gromov–Wasserstein distance of order p. We study the basic topological and geometric properties of these distances as well as their relation and derive for p=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=\infty $$\end{document} a polynomial time algorithm for their calculation. Further, several lower bounds for both distances are derived and some of our results are generalized to the case of finite ultra-dissimilarity spaces. Finally, we study the relation between the Gromov–Wasserstein distance and its ultrametric version (as well as the relation between the corresponding lower bounds) in simulations and apply our findings for phylogenetic tree shape comparisons.
引用
收藏
页码:1378 / 1450
页数:72
相关论文
共 111 条
[1]  
Agarwal PK(2018)Computing the Gromov-Hausdorff distance for metric trees ACM Trans. Algorithms 14 24-767
[2]  
Fox K(2001)Geometry of the space of phylogenetic trees Adv. Appl. Math. 27 733-45
[3]  
Nath A(2015)Sliced and Radon Wasserstein barycenters of measures J. Math. Imaging Vision 51 22-24
[4]  
Sidiropoulos A(2012)Invariant histograms Am. Math. Mon. 119 4-183
[5]  
Wang Y(2009)Partial similarity of objects, or how to compare a centaur to a horse Int. J. Comput. Vis. 84 163-1836
[6]  
Billera LJ(2006)Efficient computation of isometry-invariant distances between surfaces SIAM J. Sci. Comput. 28 1812-1172
[7]  
Holmes SP(2006)Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching Proc. Natl. Acad. Sci. USA 103 1168-301
[8]  
Vogtmann K(2009)Topology-invariant similarity of nonrigid shapes Int. J. Comput. Vis. 81 281-286
[9]  
Bonneel N(2010)A Gromov–Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching Int. J. Comput. Vis. 89 266-377
[10]  
Rabin J(2016)Fast and accurate non-sequential protein structure alignment using a new asymmetric linear sum assignment heuristic Bioinformatics 32 370-1470