\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document}-distributional summability in topological spaces

被引:0
作者
M. Unver
M. Khan
C. Orhan
机构
[1] Ankara University,Department of Mathematics, Faculty of Science
[2] Kent State University,Department of Mathematics
关键词
-distributional convergence; -statistical convergence; Hausdorff spaces; Matrix summability; Primary 54A20; 40J05; Secondary 40A05; 40G15; 11B05;
D O I
10.1007/s11117-013-0235-7
中图分类号
学科分类号
摘要
In the present paper we introduce a new concept of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document}-distributional convergence in an arbitrary Hausdorff topological space which is equivalent to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document}-statistical convergence for a degenerate distribution function. We investigate \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document}-distributional convergence as a summability method in an arbitrary Hausdorff topological space. We also study the summability of spliced sequences, in particular, for metric spaces and give the Bochner integral representation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document}-limits of the spliced sequences for Banach spaces.
引用
收藏
页码:131 / 145
页数:14
相关论文
共 41 条
[32]   Rough I2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${I}_{2}$\end{document}-lacunary statistical convergence of double sequences [J].
Ömer Kişi ;
Erdinç Dündar .
Journal of Inequalities and Applications, 2018 (1)
[34]   I-deferred strongly Cesàro summable and μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-deferred I-statistically convergent sequence spaces [J].
Vakeel A. Khan ;
Bipan Hazarika ;
Izhar Ali Khan ;
Umme Tuba .
Ricerche di Matematica, 2023, 72 (2) :991-1006
[35]   Statistical (C,1)(E,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(C,1)(E,\mu )$$\end{document}-summability and associated fuzzy approximation theorems with statistical fuzzy rates [J].
A. A. Das ;
S. K. Paikray ;
T. Pradhan ;
Hemen Dutta .
Soft Computing, 2020, 24 (14) :10883-10892
[36]   A-Statistical Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{p}$$\end{document} approximation properties of an integral variant of a general positive linear operators [J].
Carmen Muraru ;
Ogün Doğru ;
Aslıhan Gülsün .
Annals of Functional Analysis, 2020, 11 (3) :761-779
[37]   Korovkin theory via Pp-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{p}-$$\end{document}statistical relative modular convergence for double sequences [J].
Sevda Yıldız ;
Kamil Demirci ;
Fadime Dirik .
Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 (2) :1125-1141
[38]   All Topologies Come from a Family of 0-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0{-}1$$\end{document}-Valued Quasi-metrics [J].
Zafer Ercan ;
Mehmet Vural .
Bulletin of the Iranian Mathematical Society, 2019, 45 (3) :835-841
[39]   Mλm,n,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ M_{\lambda _{m,n,p}} $$\end{document}-statistical convergence for triple sequences [J].
Carlos Granados ;
Ajoy Kanti Das ;
Bright Okore Osu .
The Journal of Analysis, 2022, 30 (1) :451-468
[40]   Space of Wijsman μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-Deferred Cesàro I-Statistically Convergent of Order (a, b) Set Sequence [J].
Vakeel A Khan ;
Izhar Ali Khan ;
Bipan Hazarika .
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2023, 93 (2) :321-329