On the Uniqueness of Gibbs Measures for p-Adic Nonhomogeneous λ-Model on the Cayley Tree

被引:0
作者
Murod Khamraev
Farruh Mukhamedov
Utkir Rozikov
机构
[1] Institute of Mathematics,Department of Mechanics and Mathematics
[2] National University of Uzbekistan,undefined
[3] Vuzgorodok,undefined
[4] Institute of Mathematics,undefined
来源
Letters in Mathematical Physics | 2004年 / 70卷
关键词
Cayley tree; Gibbs measure; Ising model; λ-model; -adic field;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a nearest-neighbor p-adic ł-model with spin values ±1 on a Cayley tree of order k≥ 1. We prove for the model there is no phase transition and as well as being unique, the p-adic Gibbs measure is bounded if and only if p≥ 3. If p=2, then we find a condition which guarantees the nonexistence of a phase transition. Besides, the results are applied to the p-adic Ising model and we show that for the model there is a unique p-adic Gibbs measure.
引用
收藏
页码:17 / 28
页数:11
相关论文
共 21 条
  • [1] Aref'eva I. Y.(1991)Wave function of the universe and Modern Phys. Lett. A 6 4341-4358
  • [2] Dragovich B.(2002)-adic gravity Theoret. Math. Phys. 130 425-431
  • [3] Frampton P. H.(1987)Existence of a phase transition for the Potts Phys. Lett. B 199 191-194
  • [4] Volovich I. V.(1974)-adic model on the set Z Progr. Theoret. Phys. 51 82-98
  • [5] Ganikhodjaev N. N.(1991)Adelic string amplitudes J. Math. Phys. 32 932-936
  • [6] Mukhamedov F. M.(1996)Bethe lattice and Bethe approximation Indag. Math. N.S. 7 311-330
  • [7] Rozikov U. A.(2002)Yu.: Indag.Math.N.S. 13 177-183
  • [8] Freund P. G. O.(2003)-adic quantum mechanics with Markov Process. Related Fields 9 131-162
  • [9] Witten E.(1988)-adic valued functions Phys.Lett. B 203 52-56
  • [10] Katsura S.(1998)-adic valued probability measures Siberian Math. J. 39 427-435