The trace of an optimal normal element and low complexity normal bases

被引:2
作者
Maria Christopoulou
Theo Garefalakis
Daniel Panario
David Thomson
机构
[1] University of Crete,Department of Mathematics
[2] Carleton University,School of Mathematics and Statistics
[3] University of Waterloo,Department of Electrical and Computer Engineering
来源
Designs, Codes and Cryptography | 2008年 / 49卷
关键词
Finite fields; Low complexity; Normal basis; Dual basis; 12E20; 12E30; 11T99;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}}_{q}$$\end{document} be a finite field and consider an extension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}}_{q^{n}}$$\end{document} where an optimal normal element exists. Using the trace of an optimal normal element in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}}_{q^{n}}$$\end{document} , we provide low complexity normal elements in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}}_{q^{m}}$$\end{document} , with m = n/k. We give theorems for Type I and Type II optimal normal elements. When Type I normal elements are used with m = n/2, m odd and q even, our construction gives Type II optimal normal elements in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}}_{q^{m}}$$\end{document} ; otherwise we give low complexity normal elements. Since optimal normal elements do not exist for every extension degree m of every finite field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}}_{q}$$\end{document} , our results could have a practical impact in expanding the available extension degrees for fast arithmetic using normal bases.
引用
收藏
页码:199 / 215
页数:16
相关论文
共 17 条
  • [1] Ash D.W.(1989)Low complexity normal bases Discrete Appl. Math. 25 191-210
  • [2] Blake I.F.(1994)Normal and self-dual normal bases from factorization of SIAM J. Discrete Math. 7 499-512
  • [3] Vanstone S.A.(1992) +  Des. Codes Cryptogr. 2 315-323
  • [4] Blake I.F.(1888)− J. Reine Angew. Math. 103 230-237
  • [5] Gao S.(1977)− Invent. Math. 42 202-224
  • [6] Mullin R.C.(1999)Optimal normal bases J. Number Theory 78 85-98
  • [7] Gao S.(2005)Über die Darstellung der Zahlen eines Gattungsbereiches für einen beliebigen Primdivisor IEEE Trans. Comput. 54 98-110
  • [8] Lenstra H.W.(2007)On Artin’s conjecture and Euclid’s algorithm in global fields Finite Fields Appl. 13 411-417
  • [9] Hensel K.(2004)On primes in arithmetic progression having a prescribed primitive root Finite Fields Appl. 10 53-64
  • [10] Lenstra H.W.(undefined)Low complexity word-level sequential normal-basis multipliers undefined undefined undefined-undefined