Linear Arboricity of Outer-1-Planar Graphs

被引:0
作者
Xin Zhang
Bi Li
机构
[1] Xidian University,School of Mathematics and Statistics
来源
Journal of the Operations Research Society of China | 2021年 / 9卷
关键词
Outer-1-planar graph; Crossing; Linear arboricity; Polynomial-time algorithm; 05C10; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is outer-1-planar if it can be drawn in the plane so that all vertices are on the outer face and each edge is crossed at most once. Zhang et al. (Edge covering pseudo-outerplanar graphs with forests, Discrete Math 312:2788–2799, 2012; MR2945171) proved that the linear arboricity of every outer-1-planar graph with maximum degree Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} is exactly ⌈Δ/2⌉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lceil \Delta /2\rceil $$\end{document} provided that Δ=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta =3$$\end{document} or Δ⩾5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \geqslant 5$$\end{document} and claimed that there are outer-1-planar graphs with maximum degree Δ=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta =4$$\end{document} and linear arboricity ⌈(Δ+1)/2⌉=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lceil (\Delta +1)/2\rceil =3$$\end{document}. It is shown in this paper that the linear arboricity of every outer-1-planar graph with maximum degree 4 is exactly 2 provided that it admits an outer-1-planar drawing with crossing distance at least 1 and crossing width at least 2, and moreover, none of the above constraints on the crossing distance and crossing width can be removed. Besides, a polynomial-time algorithm for constructing a path-2-coloring (i.e., an edge 2-coloring such that each color class induces a linear forest, a disjoint union of paths) of such an outer-1-planar drawing is given.
引用
收藏
页码:181 / 193
页数:12
相关论文
共 30 条
  • [1] Harary F(1970)Covering and packing in graphs I Ann. N. Y. Acad. Sci. 175 198-205
  • [2] Akiyama J(1980)Covering and packing in graphs III: cyclic and acyclic invariants Math. Slovaca 30 405-417
  • [3] Exoo G(1999)On the linear arboricity of planar graphs J. Graph Theory 31 129-134
  • [4] Harary F(2008)The linear arboricity of planar graphs of maximum degree seven are four J. Graph Theory 58 210-220
  • [5] Wu JL(2012)A planar linear arboricity J. Graph Theory 69 403-425
  • [6] Wu JL(2000)The linear arboricity of series–parallel graphs Graphs Comb. 16 367-372
  • [7] Wu Y(1982)Complexity of the linear arboricity of a graph RAIRO Oper. Res. 16 125-129
  • [8] Cygan M(1986)Rectilinear drawings of graphs Util. Math. 29 149-172
  • [9] Hou J(2012)Edge covering pseudo-outerplanar graphs with forests Discrete Math. 312 2788-2799
  • [10] Kowalik Ł(2013)List total coloring of pseudo-outerplanar graphs Discrete Math. 313 2297-2306