Generalized Feedback Vertex Set Problems on Bounded-Treewidth Graphs: Chordality is the Key to Single-Exponential Parameterized Algorithms

被引:0
作者
Édouard Bonnet
Nick Brettell
O-joung Kwon
Dániel Marx
机构
[1] Univ Lyon,Department of Mathematics and Computer Science
[2] CNRS,Department of Mathematics
[3] ENS de Lyon,Institute for Computer Science and Control
[4] Université Claude Bernard Lyon 1,undefined
[5] LIP UMR5668,undefined
[6] Eindhoven University of Technology,undefined
[7] Incheon National University,undefined
[8] Hungarian Academy of Sciences,undefined
[9] (MTA SZTAKI),undefined
来源
Algorithmica | 2019年 / 81卷
关键词
Parameterized complexity; Feedback Vertex Set; Treewidth; Chordal graph;
D O I
暂无
中图分类号
学科分类号
摘要
It has long been known that Feedback Vertex Set can be solved in time 2O(wlogw)nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{{\mathcal {O}}(w\log w)}n^{{\mathcal {O}}(1)}$$\end{document} on n-vertex graphs of treewidth w, but it was only recently that this running time was improved to 2O(w)nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{{\mathcal {O}}(w)}n^{{\mathcal {O}}(1)}$$\end{document}, that is, to single-exponential parameterized by treewidth. We investigate which generalizations of Feedback Vertex Set can be solved in a similar running time. Formally, for a class P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document} of graphs, the BoundedP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document}-Block Vertex Deletion problem asks, given a graph G on n vertices and positive integers k and d, whether G contains a set S of at most k vertices such that each block of G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document} has at most d vertices and is in P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document}. Assuming that P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document} is recognizable in polynomial time and satisfies a certain natural hereditary condition, we give a sharp characterization of when single-exponential parameterized algorithms are possible for fixed values of d:if P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document} consists only of chordal graphs, then the problem can be solved in time 2O(wd2)nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{{\mathcal {O}}(wd^2)} n^{{\mathcal {O}}(1)}$$\end{document},if P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document} contains a graph with an induced cycle of length ℓ⩾4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \geqslant 4$$\end{document}, then the problem is not solvable in time 2o(wlogw)nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{o(w\log w)} n^{{\mathcal {O}}(1)}$$\end{document} even for fixed d=ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=\ell $$\end{document}, unless the ETH fails. We also study a similar problem, called BoundedP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document}-Component Vertex Deletion, where the target graphs have connected components of small size rather than blocks of small size, and we present analogous results. For this problem, we also show that if d is part of the input and P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document} contains all chordal graphs, then it cannot be solved in time f(w)no(w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(w)n^{o(w)}$$\end{document} for some function f, unless the ETH fails.
引用
收藏
页码:3890 / 3935
页数:45
相关论文
共 35 条
[1]  
Bodlaender HL(2015)Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth Inf. Comput. 243 86-111
[2]  
Cygan M(2016)A SIAM J. Comput. 45 317-378
[3]  
Kratsch S(1990) 5-approximation algorithm for treewidth Inf. Comput. 85 12-75
[4]  
Nederlof J(2016)The monadic second-order logic of graphs. I. Recognizable sets of finite graphs Algorithmica 76 1181-1202
[5]  
Bodlaender HL(2011)On the computational complexity of vertex integrity and component order connectivity Inf. Comput. 209 143-153
[6]  
Drange PG(2016)On the complexity of some colorful problems parameterized by treewidth J. ACM 63 60-72
[7]  
Dregi MS(2011)Efficient computation of representative families with applications in parameterized and exact algorithms Bull. EATCS 105 41-702
[8]  
Fomin FV(2018)Lower bounds based on the exponential time hypothesis ACM Trans. Algorithms 14 30-112
[9]  
Lokshtanov D(2018)Known algorithms on graphs of bounded treewidth are probably optimal SIAM J. Comput. 47 675-undefined
[10]  
Pilipczuk M(2010)Slightly superexponential parameterized problems Theory Comput. 6 85-undefined