The numerical solution of Newton’s problem of least resistance

被引:0
|
作者
Gerd Wachsmuth
机构
[1] Chemnitz University of Technology,Faculty of Mathematics
来源
Mathematical Programming | 2014年 / 147卷
关键词
65K10 (Optimization and variational techniques); 52B55 (Computational aspects related to convexity); 65D15 (Algorithms for functional approximation);
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider Newton’s problem of finding a convex body of least resistance. This problem could equivalently be written as a variational problem over concave functions in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{2}$$\end{document}. We propose two different methods for solving it numerically. First, we discretize this problem by writing the concave solution function as a infimum over a finite number of affine functions. The discretized problem could be solved by standard optimization software efficiently. Second, we conjecture that the optimal body has a certain structure. We exploit this structure and obtain a variational problem in R1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{1}$$\end{document}. Deriving its Euler–Lagrange equation yields a program with two unknowns, which can be solved quickly.
引用
收藏
页码:331 / 350
页数:19
相关论文
共 50 条