Soret effect and slow mass diffusion as a catalyst for overstability in Marangoni-Bénard flows

被引:0
|
作者
A. Bergeon
R. Mollaret
D. Henry
机构
[1] Université P. Sabatier/IMFT U.M.R. C.N.R.S. 5502,Dépt. Mécanique Bat. 1R2
[2] U.M.R. C.N.R.S. 5509,undefined
[3] LMFA-ECL-UCB,undefined
[4] ECL,undefined
来源
Heat and Mass Transfer | 2003年 / 40卷
关键词
Hopf Bifurcation; Schmidt Number; Marangoni Number; Hopf Bifurcation Point; Soret Effect;
D O I
暂无
中图分类号
学科分类号
摘要
We study the onset of time dependent Marangoni-Bénard convection in binary mixtures subject to Soret effect by numerical computation of linear instability thresholds in infinite fluid layers and two-dimensional boxes. The calculations are done for positive Marangoni numbers (Ma > 0) and negative Marangoni Soret parameters SM = –(DSγc)/(DγT) where DS and D are the Soret and mass diffusion coefficients, respectively, and γT, γc are the first derivatives of the surface tension with respect to temperature and concentration. Our purpose is to understand why for particular choices of Prandtl and Schmidt numbers, the increase of the stabilizing solutal contribution leads to a decrease of the critical temperature difference, a phenomenon already reported by Chen & Chen [5] and Skarda et al. [12] For various choices of Prandtl and Schmidt numbers we analyze the evolution of the critical Marangoni number Mac, critical wavenumber kc and angular frequency ωc with SM and compute the corresponding eigenvectors. We next propose a physical mechanism which explains how the stabilizing solutal contribution acts as a catalyst for overstability. Finally, we extend our results to two dimensional boxes of small aspect ratio.
引用
收藏
页码:105 / 114
页数:9
相关论文
共 27 条
  • [1] Soret effect and slow mass diffusion as a catalyst for overstability in Marangoni-Benard flows
    Bergeon, A
    Mollaret, R
    Henry, D
    HEAT AND MASS TRANSFER, 2003, 40 (1-2) : 105 - 114
  • [2] Marangoni-Bénard Convection with a Deformable Free Surface
    A.E.A. Technology, Harwell Laboratory, Didcot Oxfordshire, OX 11 0R, United Kingdom
    不详
    J. Comput. Phys., 1 (193-227):
  • [3] Onset of Marangoni-Bénard Ferroconvection with Temperature Dependent Viscosity
    C. E. Nanjundappa
    I. S. Shivakumara
    R. Arunkumar
    Microgravity Science and Technology, 2013, 25 : 103 - 112
  • [4] Feedback Control of the Marangoni-Bénard Convection in a Horizontal Fluid Layer with Internal Heat Generation
    Norfifah Bachok
    Norihan Md. Arifin
    Microgravity Science and Technology, 2010, 22 : 97 - 105
  • [5] Feedback Control of the Marangoni-B,nard Convection in a Horizontal Fluid Layer with Internal Heat Generation
    Bachok, Norfifah
    Arifin, Norihan Md.
    MICROGRAVITY SCIENCE AND TECHNOLOGY, 2010, 22 (01) : 97 - 105
  • [6] 高频振动影响下双层Marangoni-Bénard对流稳定性研究
    刘秋生
    王安
    北京交通大学学报, 2006, (04) : 6 - 10+14
  • [7] Transient growth in Poiseuille-Rayleigh-Bénard flows of binary fluids with Soret effect
    Jun Hu
    D. Henry
    H. Benhadid
    Xieyuan Yin
    Applied Mathematics and Mechanics, 2016, 37 : 1203 - 1218
  • [8] Transient growth in Poiseuille-Rayleigh-Bénard flows of binary fluids with Soret effect
    Jun HU
    D.HENRY
    H.BENHADID
    Xieyuan YIN
    AppliedMathematicsandMechanics(EnglishEdition), 2016, 37 (09) : 1203 - 1218
  • [9] Transient growth in Poiseuille-Rayleigh-B,nard flows of binary fluids with Soret effect
    Hu, Jun
    Henry, D.
    Benhadid, H.
    Yin, Xieyuan
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2016, 37 (09) : 1203 - 1218
  • [10] On the use of Galerkin-Eckhaus method to study the nonlinear regime of Marangoni-Bénard instabilities in an evaporating liquid layer
    J. Margerit
    M. Dondlinger
    P. C. Dauby
    The European Physical Journal B - Condensed Matter and Complex Systems, 2006, 54 : 485 - 492